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ABSTRACT 

This report is concerned with the realization of RLC admittance 

and impedance matrices      It establishes necessary and sufficient conditions», 

in terms of direct synthesis procedures,   for the realizability of  n      order 

Y   or    Z    matrices      Each independent branch of the resulting structure is 

a two-terminal driving-point impedance in series with a voltage source,   or 

a two   terminal driving-point admittance in parallel with a current source. 

Each dependent branch is a two-terminal driving-poini admittance or 

impedance 

Both the admittance and impedance realization procedures are 

completely general.      They are developed from,   and follow,   a re-evaluation 

of cut.   set and tie-set metfhods of obtaining the admittance and impedance 

matrices.     These methods are not mentioned by their common names,   but 

instead are identified by the name   'region1, and ''circuit. "    This is done 

merely to place emphasis on the important physical interpretation of the 

mathematical processes of analysis.     This same interpretation is also 

considered to lead to a  clearer understanding of the realization process. 

In the analysis this interpretation also shows how the matrix may be 

written by inspection without having to consider cut-set and tie-set matrices 

The realizations of the    Y   and the    Z    matrices are developed in- 

dependently.     It is  shown in the formulation of the    Y   matrix that each and 

every entry has an associated plus or minus  sign — even zero entries.     The 

signs of the entries conclusively determine the geometry of the independent 

branch voltages   that is,   the tree,   and by so doing set forth all possible 

ways in which dependent branches may be connected.    The  ''magnitudes1. 
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of the entries determine the actual dependent branches themselves.     Thin 

characteristic of the    Y    matrix is dramatically opposed to 1he    Z    matrix 

First,   half of the    Z    matrix zero entries have no sign associated with 

them.     Second,   if all the  signs are known,   the geometry of the independent 

current branches is  still questionable      One predominant   cause of these 

differences is connectedness:    The independent voltage branches are con- 

nected,   while this restriction is not placed on the independent current 

branches   hence the  signs of the    Z    matrix determine only a set of possible 

independent branch geometries    while the    Z    magnitudes determine which 

set is  required.     A reduction process applied to the    Z    matrix then develops 

the dependent branches one by one 

Following the development of these  realization procedures,   and 

selected examples from them,   the matrices under consideration and the 

inverse matrices are discussed in detail.     In this discussion,   the differences 

between a tie   set    Z    matrix and ti.e inverse of a cut   set    Y   matrix are 

pointed out as well as the differences between a  cut   set    Y   matrix and the 

inverse of a tie -set    Z    matrix      At the  same time the change in network 

geometry that results from interpreting a cut   set    Y    matrix as a multipcrt 

matrix    and a tie -set    Z    matrix as a multiport matrix    is illustrated 

The process of reducing the number oi  response variables from the cut 

or tie-set    Y   or    Z    matrices is then described,   along with its physical 

interpretation.     This leads into the analysis of networks containing multi 

terminal elements,   which forms the concluding topic  in this  study. 



I.     INTRODUCTION 

A basic discipline in modern network science revolves about the 

interpretation and utilization of the geometric  properties of a network 

These properties involve both the structure of the network and the place- 

ment of elements within the network structure.     The emergence of this 

discipline was accompanied by a variety of descriptive titles that have 

recently been narrowed down to the theory of linear graphs.     The present 

theory of linear graphs finds a wide variety of applications in network 

analysis and realization.     In general the material encompasses a wide 

variety of approaches and is presented in many levels of difficulty.     For 

an excellent survey of such literature as it applies to electrical network 

theory,   the reader is  referred to   S.   Seshu   and   M.  B.   Reed.1    To be able 

to approach the  subject matter of r.his  study,   the  reader  should be familiar 

with the terms  ''branch, "   ''node, "   ''graph, "   ''tree, "   ''co-tree, "  "chord" 

or  ''link, "   ''cut  set, "   ''tie set, " and  ''oriented graph. "    Brief definitions 

of these terms are given in Appendix A,   and more explicit descriptions 

1 
may be found in Seshu and Reed. 

The principal object of this thesis is to present new methods of 

analysis and synthesis for linear bilateral networks based on topological 

notions.     First,   several of the above concepts are discussed from the 

admittance and impedance viewpoint.     Following thrs discussion,   the analysis 

and synthesis of n      order admittance and impedance matrices corresponoing 

to networks having   n    independent branches  is presented.     The discussion 

concludes with the analysis of networks with incorporated multiterminal 

elements. 
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The two basic elements in the network topology are the node and 

the branch      In this    study,   a network branch,   or  simply a branch,   is 

shown in its most general form in Figure  1      Note that a voltage  source 

+ «*- 

o ► 

Figure  1.     Generalized Branch.     (Response variables:    J = branch current, 
V = branch voltage;   Excitation variables:    I - branch source 
current,    E  = branch  source voltage. ) 

in parallel with an impedance must be considered as two branches in 

parallel,   and that a current source in series with an impedance must be 

considered as two branches in series.     The branch as  shown may,   in 

essence,   be considered as a network itself,   if one considers every physical 

element as a branch.     In this discussion,   however,   the branch plays the 

role of a distinguishable two-terminal device.     In line with this,   the nodes 

are considered as the accessible terminals of a branch.     The  reasoning 

behind this distinction will become clear in the   realization      procedures 

of the following chapters. 

Realization has come to be colloquially synonymous with synthesis, 
although synthesis includes both problems of approximation and realization. 
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When a collection of branches and nodes are brought together,   the 

resultant structure is called a graph.     In analyzing the  response of a net- 

work to its exciting sources,   the branches of the network graph are divided, 

according to Kirchhoff's laws,   into two sets:    a set of dependent branches 

and a set of independent branches.     To be more precise,   if the response 

is desired in terms of branch voitages,   a set of independent voltage branches, 

which comprise a tree     of the network graph,   are selected and the com- 

plementary set of branches  is  termed dependent.     This complementary 

set is dependent,   however,   only in so far as voltage analysis is concerned, 

since it exactly comprises a set of independent branches that form a co-tree, 

if the response is desired in terms of branch currents.     Here,   it is interesting 

to note that if the graph   G   is  separated into two subgraphs    G.    and   G-, , 

2 
the  separation can always be done such that    G.    is planar,     but not in a 

manner such that both   G.    and   G,    are planar.     This follows from ehe fact 1 2 r 

that the maximum number of nonparallel branches in a planar network 

containing   n   nodes is    3n - 6    (see Appendix B).     Since the independent 

voltage branches form a tree,   and thus a  planar subgraph,   nothing can be 

said for the general case  regarding the planarity of the subgraph of inde- 

pendent current branches. 

In the analysis and realization problem,   it is immediately apparent 

that a direction or orientation must be assigned to the independent branches, 

and such orientation will affect the  signs in the pertinent    Y   or    Z    matrix. 

In Chapters  II and III   this is illustrated and emphasized,   and is  recognized 

after a re-evaluation of cut-set    and tie-set    methods of obtaining the 

See Appendix A for definition. 
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short -v-.i rcuit admittance and open-circuit impedance matrices.     These 

methods are not referred to by their common names,   but instead are 

identified by the names   "region'1   and   ''circuit. "    This is not intended 

as a change in terminology; it is used merely to place emphasis on what 

the author considers the important physical interpretation of the mathematical 

processes of analysis.     The same interpretation is also considered to lead 

to a  clearer understanding of the realization process.     In fact,   it is the 

realization process that is emphasized in this study.     More precisely,   it 

is concerned with the necessary and sufficient conditions,   in terms of a 

direct synthesis procedure,   for the realizability of an  n       order    Y    (or   Z) 

matrix by a complete  set of   n   independent voltage (current) branches and 

a necessary and sufficient set of dependent voltage (current)  branches, 

where each branch is a two-terminal device as already mentioned. 

The realization of the    Y   and the    Z    matrices are developed inde- 

pendently.     A slight reflection of the matrix characteristics  shows how 

such independence  seems desirable,   if not necessary.    As we shall see, 

each and every entry in the   Y-matrix formulation may be  said to have an 

associated positive or negative sign  — even zero entries.     Ttiese  signs of 

the entries completely determine the geometry of the independent voltage 

branches (that is,   the tree) and by so doing set forth all possible   ways 

in which the dependent voltage branches may be connected.     The possible 

dependent branches are the -,     branches determined by the    n+ 1 

nodes of the network tree,   as illustrated in Figure Z.     The only exception 

to this  statement is the case where a  set of tree branches  forms a linear 

subtree,   with no other tree branches incident to the internal nodes of this 

linear subtree.     In this case,   the order cannot be determined from the  signs 

alone;   regardless of their order,   however,   the tree geometry is essentially 

invariant. 
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Figure 2.    Examples of Branch Geometry Corresponding to a Particular 
Y   Matrix:   (a) Possible Signs of Entries for a   Y   Matrix; 
(b) Corresponding Network Tree;   (c) Possible Dependent 
Voltage Branches. 

(a)   . + + + + + 
+ + + + + 
+ + + + + 
+ + + ++ 
+ + + + + 

(b) o < 

Figure  3.    Possible Co-Trees for a Network with All Signs of the Entries 
in Its    Z    Matrix Positive:     (a)  Possible Signs for Entries of 
Z   Matrix;   (b) Five Corresponding Structures of the Independent 
Current Branches. 



This characteristic of the    Y    matrix is dramatically opposite to 

that of the    Z    matrix.     First,   it is  strongly suspected that a zero entry 

effectively has no sign associated with it.      Second,   if all the  signs art1 

known,   the topology of the  independent current branches is  still questionab.'- 

As an example,   consider the fifth-order    Z    matrix having all  signs posit; .■-. 

Five network structures),   each having an independent current branch geometry 

that agrees with such a    Z    matrix    are  shown in Figure  3.     O^e main  reason 

for these two differences is connectedness; the independent voltage branches 

must be connected,   while the independent current branches need not  be 

connected.     Hence the signs of the    Z    matrix determine un!y a  set  of 

possible independent branch geometries,   while the    Z    entry magnitudes 

determine which particular geometry is  required 

In the next chapter we  shall focus our attention on the     Y    matrix 

and in the third chapter we  shall consider the    Z    matrix 

It has  recently been learned that half ot the  zero entries have an assocat. j 
sign,   and half have no associated bign. 



II.     SHORT   CIRCUIT ADMITTANCE MATRIX 

Z   1     Analysis 

Consider the network graph of Figure 4   where the lines (branches) 

represent elements   (R,  L    and   C,   excluding mutual  inductance),   which 

are numbered arbitrarily and which meet at the junctions or nodes.     In 

line with common practice,   ast'ign branch current directions and select 

an arbitrary tiee such as indicated in Figure 4  by branches  1,  2,  3,   and 4. 

For a particular branch,   the direction of branch current flow is opposite 

to the direction of branch voltage  rise as indicated by the convention adopted 

in Chapter I,   Figure   1       The tree branch voltages (that is,     v.,   V-,,   v., 

and   v.)    become the  set of independent branch voltages and appear in the 

final short-circuit equations of the network. 

Now imagine welding a loop of   ' chain''   to each tree branch and 

allowing the loop to assume a position such that each loop of chain crosses 

a branch only once,   and crosses one and only one tree branch as is 

illustrated in Figure  5.     The only tree branch crossed by a chain is the 

one to which that chain is welded      These positions are not altogether 

a rbitrary. for reasons that will become apparent later.     However,   for the 

present,   assume their positions arbitrary under the  stipulation that each 

loop of chain crosses only one tree branch 

This   ' chain concept''      is a justifiable tool and its great usefulness 

This concept of using a chain to define the branches of a cut set was first 
conceived by Professor N    DeClaris in  1954  and subsequently introduced 
to the author in 1959 
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Figure 4.     Example Network Graph with Branch Currents  Identified. 

,-3^. 

Figure  S      Fx^mple Network Graph with  Regions Identified. 
(Dashed lines define the various  regions.) 
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becomes apparent later.     For the present    however,   the most important 

concept is not the chain,   but rather the inner   '"region"   for which the chain 

forms the boundary.     The resultant short-circuit admittance matrix develops 

from applying Kirchhoff's current law to the currents entering and leaving 

these regions . 

In Figure 5  the example regions are labeled and the branch excitation 

currents and response voltages are identified.     Notice how each branch 

current enters one and only one region.     The current for branch 1   appears 

to enter both region 1   and region Z.     This is true,   but since it not only 

enters  region Z,   but leaves  region Z   as well,   it can be considered as not 

naving entered region Z  at all. 

The facts describing the network and its regions are presented in 

the Region Table.    Each entry in this table is    -1   if the branch current 

enters the region according to the assigned direction,    +1    if the branch 

current leaves the region,   and   0    if the branch is totally inside or outside 

the region. 

Region Table 

1 Z 4 5 6 7 8 q 

Region 1 + 1 0 0 0 + 1 0 0 0 + 1 

Region Z 0 + 1 0 0 + 1 + 1 0 -1 + 1 

Region 3 0 0 + 1 0 0 0 + 1 fl -1 

Region 4 0 0 0 + 1 -1 -1 -1 0 0 
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The columns of the Region Table  relate the branch voltages in terms of 

the independent branch voltages.     When one considers the table as a matr.x, 

this means that 

v   =   a   V 1) 

where t stands for transpose and 

V = 

V. 

V, 

V, 

V, 

1000 1000 1 

0100 1 1 0-1 1 

0010 0 0 1 1-1 

0     0    0     1-1-1-1      0      0 

The rows relate Kirchhoff s  current law to the  regions in so far as the net- 

work branches are concerned.     This means 

oj  = 0 

where 

(2) 

The generalized branch equation, 

j + I'   =   y(v + E') 5) 
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where 

and 

y,     o 

y = 

E' 
L   9. 

together with Equations (1) and (2)  yield 

QJ+QI'   =   aya   V tay (4) 

al1   -QVE'   =   I   =   aya   V   --   Y      V (5) 

where the equivalent current sources acting in the independent branches, 

"V 
h 
h 
_\ 

t"Vi 
and where    y.    is the driving-point admittance in the   i       branch.    In 

s c Equation (5),    aya    =  Y is the common complete short-circuit admittance 

s c matrix.     Here    Y is called complete because it completely determines 

the response of the network in terms of the independent branch voltages. 

It is called a short-circuit admittance matrix because the    ij    entry 

s c Y. .    =   I. /V.    with all    I,    ,.     assuming such values   as   are   necessary to 
ij 1     J k/i 

set all   V,    / .  = 0 .    When these conditions are fulfilled,   all tree branches 
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except the  j       branch may be  short circuited without disturbing the state 

of the network. 

For a better understanding of these concepts,   carefully examine 

s c the Region Table,   Figure 5,   and the admittance matrix    Y This study 

sc 
involves the    Y..     entry and shows: 

ij 

s c 
1) Y..      is a unique sum of branch admittances    y,   . 

ij 'k 
sc 

2) The several   y,     appearing in the   ij    sum,     Y..        are the 
K IJ 

admittances of those branches that enter and/or leave both region   i   and 

region   j . 

s c 3) The signs of the   y,     comprising    Y..     will be plus if the branches 
K !J 

enter both or leave both regions    i   and   j    (such as branches 9 and 5   with 

respect to regions  1 and 2),   and will be minus if they enter one and leave 

the other region (such as branches 9 and 8   with  respect to  regions  3 and 2). 

4) If region   i   and region  j   are separated or disjoint   (such a? 

regions 3  and 4),   all the involved branches (branch 7) have to leave one 

region and enter the other region. 

5) If region   i    includes region j ,   or vice versa,   (such as  regions 

1   and 2),   each of the involved branches (branches   9   and   5) has to enter 

both regions or leave both regions. 

6) From steps 3, 4,  5,   all the several   y,     comprising the sum 

sc 
Y..     will have the same sign, 

ij 

7) If branch  i   is a tree branch,   then   y     will appear only in the 

sc 
Y..      sum. 

li 

The conclusion drawn from the above is that given the network,   its tree 

and the regions (and thus   necessarily,   as we shall  see,   the independent 

branch response voltages and excitation currents),   the admittance matrix 



is then known.     Neither the dependent branch voltage directions nor the 

current directions or tables nor intermediate equations are necessary in 

the unique determination of    Y for the prescribed network. 

At this point   some of the obvious questions about     'arbitrary 

assignments''   should be answered.     The quantities under scrutiny are 

shown in Figure  5.    Note that each   'chain1'   encircles one and only one 

of the nodes of the tree branch it is associated with.     The example chains 

have been numbered according to the branch each chain is associated with, 

or   ''welded11   to.     The branch quantities    V   and   I   must '"attack" the 

encircled node,   or both be  reversed for all branches  simultaneously.     If 

only the    V    (or   I) directions are changed    a minus  sign will enter Equation 

s c s c s c 
(5) with the effect of destroying the  signs of   Y"       so that    Y       f   Y. 

Figure 6 shows most effectively how I. is injected into the i region. 

Thus, once the regions are drawn, the independent branch currents and 

voltages are automatically specified. Th<3 question of arbitrary assign- 

ments now involves only the determination of the regions. Each chain 

may specify two regions, that is, it may be thrown to the right or to the 

left.     Whatever way it is thrown has made no difference in everything 

discussed up to now      When one attempts to go in the opposite direction. 

sc 
however,   (that is,   given    Y determine the network),  it becomes con- 

venient to add the stipulation that no chain may cross another chain. 

Theorem.    Given any tree,   it is possible to   ''throw the chains'' 

(specifying the  regions)  such that no two chains cross each other. 

Proof:    Every tree has at least two ends.     Throw these two end 

chains away from the tree   (for example consider chains  1,   3,   and 4    in 

Figure 6).     Next consider each thrown chain    the tree branch it crosses, 

13- 



and the encircled node of that same tree branch as an end node  replacing 

the unencircled node of that tree branch.     Now throw two more end chains 

and so on,   reductio ad absurdum. 

This helps clear up the questions concerning arbitrary assignments 

One other condition must be pointed out.     In the preceding discussion    no 

direct statement was made restricting a branch admittance to a single 

R,   L,   or   C   element.     There is no restriction.    A branch admittance    y. 

is the driving-point admittance of that branch considered as a two-terminal 

network; therefore   the example that has been carried through,   could    in 

effect,   be a   19-,   50-,   .   .   .    node network presented as a   five-node network 

For example,   consider first the network in Figure 5.     The signs 

s c of the elements comprising    Y        are: 

y 

+ + - - 

+ + - - 

- - + - 

- - - + 

(6) 

s c s c Here the matrix of the signs of    Y is denoted by    Y The sign of 

sc s c 
Y..      is minus if region    i    and region   j    are disjoint.     The  sign of    Y. . 

is plus if region   i    contains  region  j    or vice versa.     By inspection the 

sc 
elements of   Y        are: 

Yn = <y4 
+ y5 

+ V 

-sc 
12 (y9 + y5> 

Y13   =   <V 
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sc 
Yi4 a <y5' 

Y22   =   (y9 + y8 * 5 ' n ' x6' 

,sc 
23 (y9 + y8) 

-sc 
24 (y* + yJ 

Y33   =   (y9 + y8 + y7 + y3> 

Y 
34 (y7) 

rsc 
44 (y7 + y5 + y6 + y 

s c with the  sign of each    Y..      as  set forth in matrix (6). 

Consider Figure 6   as a second example.     This is the same network 

as Figure  5,   but the chain defining region 2  is thrown in the opposite manner. 

For Figure 6, 

+ - . _ 

- + + + 

- + + - 

- + - + 

(«) 

By inspection,   the elements are the  same as all elements in Equation (7) 

with the signs as set forth in matrix (8).     This is as expected since  regard- 

less how the chains are thrown,   each chain will cross the  same  set of 

branches.     Note how the throwing of chain 2   in the opposite direction changed 

the  reference direction of   V.    and    I-.     Note also how sign matrix (8) may 

be obtained from matrix (7) by multiplying row 2  and column 2   of matrix (7) 
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Figure  6.     Variation One on Example Network Graph. 
(Dashed lines define the various  regions.) 

Figure 7.     Variation Two on Example Network Graph. 
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by    -1.     The effect of reversing the direction in which chain   i    is thrown 

s c 
is to multiply row   i   and column   i   of   Y        by    -1      This does not alter 

the symmetric property or positive diagonal property of   Y 

If chain   1    in Figure 6   were thrown in the  reverse manner along 

with chain ?.,   then the  sign matrix for the resulting Figure 7   would be 

rSC 

+ + + + 
+ + + + 
+ + +        - 
+ + - + 

(9) 

For a more complicated example,   see Figure 8   where the branch 

current and voltages have been omitted.     (This is acceptable since their 

directions are implied by the regions.)    For Figure 8: 

+  +   - -   -    - 
+ +  - ..   .   ... 
-   ~  + +  -   - 
-   ...  + +  _   ... 
..   _   .. -   +  + 
_    _    - -   +   4 

(10) 

The examples  selected have been largely arbitrary.     It is worth 

while to include two more examples of very specific types,   the   ''star'' 

tree and the       linear'' tree.     The  star tree with all regions disjoint is 

shown in Figure 9   and its sign matrix is; 

+   -    - ... 
- +   - - 
- -   + - 
-..._ + 

(11) 

The linear tree with all  regions containing one another  is  shown in Figure  10 
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Figure 8.     Second Example Network Graph. 

Figure 9.    Star Network Tree. 

N 
X 

•*^-. 

"-  Z-'s ' 

,-*.** 

Figure  10.     Linear Network Tree. 
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and has a sign matrix: 

.sc 

+ + + + + + 
+ + + + + + 
+ + + + + + 
+ + + + + + 
+ + i- + + + 
+ + + + + + 

(12) 

The reason for their inclusion along with their generalizations should be 

obvious.     They are two geometrical   ''limits''   in the series of trees. 

A natural question arising in this study is:   When a short-circuit 

admittance matrix is  specified,   can the corresponding network be obtained? 

This is a difficult question to answer and must be broken into phases. 

First,   in the simplest case,   assume that one takes a network and obtains 

s c a    Y matrix in the manner just described.     The network may then be 

obtained using only the    Y matrix.     Furthermore,   the    Y°      matrix 

may be altered by any combination of symmetric elementary operations 

without affecting the  realizability of the network      Elementary operations 

are:    (1)   multiply any rows and corresponding columns by    -1 .   and 

(2)   rearrange the  rows and corresponding columns. 

This analysis discussion concludes with an interesting observation 

concerning a tree and the  set of   ''chains''   related to that tree.     When 

considering the tree by itself,   the chains,   which define the regions,   may 

be interpreted as the dual of that tree.     This is easy to visualize by con- 

sidering the normal process of constructing a dual network.     During this 

construction,   each branch of the original network is associated with or 

''crossed1' by a single dual branch.    Since the tree branch current is 

identically zero,   the terminals of the dual branch may be joined so that 
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iv.s branch voltage is identically zero.     Joining the two ends of each dual 

branch identifies it with the chain of its dual  tree branch.    Connectedness 

of the tree is retained in the dual graph by  allowing the chains to touch 

but not cross,   in the manner stipulated by the tree geometry.    For an 

example of this,   see Figure  11.     It is also worth while to note that since 

the co-tree is not necessarily planar (see Chapter I) it will not have a dual 

graph in general.     Therefore this observation is not expected to carry 

over into the impedance analysis of Chapter III. 

(a) 

(b) 

o                       a 

 o  

o o 
c o 
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o 1 

0  
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(c)     / 
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\        — 
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VH j^-^ 

V 

s   . 

S 
X 

Figure 11.    Construction of Network-Tree Dual,     (a)   Network Tree 
(b)   Network Tree with Dual Branches,     (c)   Network Tree 
with Dual Branches Short Circuited. 
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s c 
2   2     Direct Synthesis of a Completely Specified    Y        Matrix 

The process of building the  tree and then the network from a given 

s c s c Y (and thus    Y      ) hinges on the concept of two chains acting as one. 

Two chains,   say   i    and   j ,   act as one when the signs in row   i   and   j    of 

Y are identical with the possible exception being the    ij    entries.     The 

ii   and   jj    entries are naturally plus and the    ij    and   ji    entries are plus 

if they are concentric,   and minus if they are disjoint.    When two chains 

act as one,   and are concentric,   the tree branches they cross form a linear 

subtree as indicated in matrix (6)   rows  1   and   2,   and Figure 5,   branches 

1   and   2.    When two chains act as one,   and are disjoint,   the tree branches 

they cross form a  star subtree   as indicated in matrix (6)   rows   3   and  4, 

and Figure 5,   branches  3   and   4.     Regardless of the size or  shape of the 

tree,   there are at least two  sets of chains acting together.     Figure 8   and 

matrix (10)   are another obvious example of this effect. 

This concept of linear and siar  subtrees must be extended even 

further.     Elementary linear and star  subtrees are  shown in Figure  12a 

and 12b.    Chains   i   and   j    act alike and thus the corresponding rows   i 

and   j    must be identical as far as the  rest of the network is concerned. 

Conversely,   if rows    i    and   j    are alike except for the    ij    and   ji    entries, 

these rows correspond to linear or star subtrees,   depending on the sign 

of the    ij    entry.     Mure generally,   two subtrees maybe considered con- 

nected in the linear or star fashion shown in Figure  12c and 12d.     Here 

the entries in all the  rows corresponding to branches in the tree section   i 

can be made identical in so far as the  rest of the network,   section  j ,   is 

concerned.    Conversely,   if a  set of rows are alike,   except for those entries 

showing the interrelationships within that corresponding set of branches, 
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Section j 
Section i. 
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Figure 12.    Subtrees     (a) Linear Elementary Subtree,   (b) Star 
Elementary Subtree,    (c) Linear General Subtree, 
(d) Star General Subtree. 
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that corresponding set of branches must form a subtree that is connected 

to the  resi of the network in either the linear or star method of Figure  12c 

and 1 2d. 

When two branch chains act alike and their relationship to one 

another is known,   one of the corresponding branches may be ignored: 

that is,   all of the  signs of one corresponding row are  redundant as far as 

the rest of the network is concerned      Since this is true,   the rows may be 

merged into one with the physical effect of reducing the number of branches 

in the tree.    In other words,   the  size of the tree is  reduced .    Repeated 

application of this process is the means for producing the tree for a given 

sign matrix.     For a better understanding of this process,   visualize a tree. 

Consider each branch as a subtree or section of a tree.    Gradually allow 

these  sections to grow and thus absorb one another until,   in the limit. 

Figures  lZc or 12d   result.    This is the  effect of gradually merging rows 

in the sign matrix.    If this process is interrupted,   thus indicating a contra- 

diction,   the tree does not exist 

This process of building a tree will be further explained in conjunction 

with the example shown in Figure 13    where the original complete sign 

matrix is Figure  13a.     Start by removing all  redundant  rows cor responding 

to concentric  chains     or linear portions of the tree (Figure  13b).     These 

chains act alike and thus the doubly (or     in general     multiply) numbered 

branches (rows) are considered as   single branches during the  remainder 

of the process.     Next remove all redundant rows that act alike and correspond 

to disjoint chains (there must be at least two of them),   and draw these  star 

like ends of the tree.     During this stage and the following stages,   whenever 

two rows are compared    any of the column.'  whose corresponding rows 
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123456789 

1 + + + + + + + + + 
2 + + + + + + + - + 
3 + + + - - + - + + 
4 + + - + + - + + + 
5 + + - + + - - i- + 
6 + + + - - + - + 4 
7 + + - + - - + + + 
8 + - + f + + + + - 
9 + + + + + + + - + 

1 + + + + + + + +  + 
29 + + + + + + + - + 
36 + + + --  +  -  + + 

4 + +- + +-+ + + 
5 + +- + +-   -  + + 
7 + +- +  -- + +  + 
8 +  - + + + + + +- 

123456789 

1 ++ + + +  +  + +  + 
298 + + + + + + + - + 

36 + + + -- + - + + 
4 ++- + +-+ + + 

57 ++- + +-- + + 

8 

o o 
29 

O 6 

123456789 

2891    + + + + + + + - + 
36    ++ + -- + - + + 

574    + + -++-- + + 

8 

o o <>-- 
29        I 

O 6 o  
7 4 

123456 7 89 

2981     (- + + + + + +-4 
57436    ++- + +-- + + 

29       I 7 4 

5      !36 i L- 

Figure  13.     Example of Network-Tree Realization. 
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have been deleted may be ignored if one of the comparing rows is doublmt; 

for that  deleted row.     For instance,   when   :omparmg rows 29   and  8 

column 9   maybe ignored since  rovv 9   was deleted and row 2   is doubling 

for row 9   (see Figure   13c).     This basic process just repeats itself,   and 

every time a row is deleted,   that branch is added to the drawing.     In 

Figure  13d,   row 4   has been d-=.'eted    and branch 4  drawn linearly with 

5   and   7 .    and similarly branch  *     linearly with   £9   and   &      In Fiaure  13e 

branch 36   has ber-n added star-like with branches   5.   7,   and 4      At this 

stage,   the tree has been reduced  just  as in Figure  12c      In Figure  13f 

the two halves have been brought, together and the tree geometry has been 

completed 

This is a once   through process      If at any stage there are no two 

rows that act. alike     then there is no corresponding tree for that sign matrix. 

When one of two re vs 15 to be deleted during the process,   it. is  immaterial 

which row is deleted      It may also be necessary mentally to multiply a row 

and a corresponding eclum- by      "    to determine two rows that act alike 

This is illustrated in a  c econd example    Figur?   14      Sign matrix (13) has 

been included a°- an example where no corresponding tre«3 c-xistc: 

Y- 

+   + 
4      + 

+   + (13) 

After the tree corresponding to a given admittance matrix has been 

produced    the equations  relating the branch admittances with the matrix 

elements  are immediate    for example     see Equations \~l) .     From these 

equations one may ascertain the  realizability of the elements.     It is important 
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Figure  14.     Second Example of Network Tree Realization. 
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to note that all the    Y..     entries in the complete short-circuit admittance 

matrix must be driving • point admittances.     This points out one of the 

difficulties in discussing the realization procedure only in terms of resistive 

networks.    Any    Y   matrix of a resistive network automatically has driving- 

point functions for each and every entry.     This follows since there is no 

difference between driving-point and transfer functions of a resistive 

network   —  each  is  merelv a   constant        This     however     rines  not hold for 

any   Y   matrix of an   RLC   network,   because there is a definite distinction 

between transfer and driving-point functions.     Therefore,   throughout the 

sc sc 
description of the    Y realization    each entry   Y..     must be a driving- 

point function multiplied by its associated positive or negative  sign.    Under 

this stipulation,   the preceding and following realizations are not restricted 

to resistive networks,   but are valid for general   RLC   networks.    In the 

comments and general realisation procedure that follows,   however,   the 

entries or   ''magnitudes''   will be  referred to as though they were  resistive 

constants in order to make the theory easier to understand.     Whenever an 

important distinction between the resistive case and the   RLC   case arises, 

this distinction will be pointed out. and discussed. 

In conjunction with the  realization of a complete short-circuit 

admittance matrix,   consider the linear  subtree,   branches 2   and   9,   in 

Figure  13.     In proceeding from step e   to  step f    these branches may be 

ordered in one of two ways.    Although the proper order will reveal itself 

automatically through the magnitude equations,   it is more convenient to 

order them     "operly during the transition from step e   to  step f.     The correct 

s c s c 
order is learned by comparing the magnitudes of    Y-,,     and    YQ,     where    k 

s c 
is any other branch      II    Y_,     is the larger,   then branch 9   is closer to 
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1 

s c 
branch   k   than branch   Z   is.     In Figure 13,     Yq,     will always be the larger 

This general characteristic becomes obvious upon considering Figure  12 

In Figure 12,   the order of branch   i   and   branch j   is specified by the 

magnitudes of   Y.,      and    Y.,      where   k   is any branch in the right or left 

extension.     Let   k   be contained in the left extension.     Since the magnitude 

s c of   Y.,      is the sum of all admittances cut by chains   k   and   j ,   and since lk i J ' 

all branches cut by chains    k   and   i   are also cut by chains   k   and   j    but 

s c 
not the  reverse,   the magnitude of   Y.,      must be  equal to or larger than the 

s c 
magnitude of   Y.,   .    Should the magnitudes be equal for all   k   in both ex- 

1KL   

tensions,   then only branches   i   and   j    meet at their common node in the 

complete network and their order is arbitrary.     This comparison of 

magnitudes  seems at first to apply only to resistive networks.     It can easily 

s c 
be interpreted for   RLC   networks,   however.     The concept that    Y. .     is 

ij 
s c s c s c larger than    Y means that    Y..    2.  Y        for single-element kind networks 

° rs ij rs ° 
s c 

only.    When   Y..      is a general positive real network function,   then the 

SC SC SC    —\ sc 
concept   Y..     is larger than   Y        means that    Y..    J)   Y    '; which is equi- r        ij ° rs ij rs n 

S C s c valent to saying that    Y..    -   'i is also a positive  real network function. 1     ° ij rs r 

The preceding method is a very quick and easy method    which is 

guaranteed to be a once-through process in realizing the network.     It tests 

for realizability through producing the network itself.     Its primary appli- 

cation lies in realizing a network from a given complete short-circuit 

admittance matrix in which the vast majority of the entries are  specified 

positive real network functions times   ± 1 . 

When the given matrix is large and contains several ''arbitrary ■ 

unspecified entries,   a more sophisticated approach is desirable.     In such 

an approach,   it is necessary to ''preamble''   (that is,   analyze and rearrange) 

the problem before proceeding with the  realization process      On the basis 
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of this,   the following procedure is presented as a completely general 

solution of the problem      Rather than build the network tree directly,   one 

rearranges the elements of the matrix and places them in such an arrange- 

ment that the corresponding network tree is as visible in the matrix as it 

would be if it were drawn on paper 

s c 
2   3     Realization of   Y with Zero Entries 

A difficult problem in modern network theory has been that of 

reducing a given n      order short-circuit admittance matrix to a realizable 

network.    Although the entrance of unspecified   ij    entries into the matrix 

may reduce the number of restraints between various entries,   such 

''arbitrary'1 entries tend to complicate this  synthesis problem.     This 

complication arises because the answer to the realizability problem is 

no longer a straightforward   ''yes"' or  ''no, '"' but rather is a  ''no1' or a 

conditional ''yes,'' where the conditions depend on the many restrained 

assignments of values to the unspecified entries.     It should be obvious 

that s'.v'h an assignment critically affects both the realizability and com- 

plexity of the final network. 

In presenting a  solution to this general problem,   we break the 

problem into two parts,   the first dealing with the matrix of the   ij    entry 

signs,   and the  second dealing with the magnitudes of the entries.     The 

sc 
signs are referred to as    s..,   the sign matrix as    Y     ,   and the magnitudes 

!J s 

as  simply   y. , .     Thus    y .    represents the positive sum of branch admittances 

that are crossed by both the chains  defining the    i   and   j    regions,   and 

sc Y..     -   s..v...     Whenever    v..    is  said to contain    y,     ,   or    v..    j y.     ,   all ij ij rij 'ij rkr 7ij ^ >kr 

branch admittances comprising the  sum    y,        are present in the sum of K r 

terms comprising    y . . 
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s c The first problem concerns    Y and its corresponding network 

s c tree.    Before developing the characteristics of    Y     ,   however,   a few 

comments on terminology are necessary.     Where it is necessary to dis- 

tinguish types of trees and subtrees,   the following will be referred to 

(see Figure 15) : 

1. Maximal Tree:    With regard to a particular network,   any tree 

that contains every node of the network is a maximal trpp 

2. Minor Tree:    A subtree that can be completely severed from the 

maximal tree by splitting one node exactly in half is a minor tree. 

3. Minor   r-Tree:    A subtree that can be completely severed from 

the maximal tree by " splitting''    r    nodes in half in a minor   r-tree. 

(a) 
i 

(b 

(c) 

V 

(d) 2 3 4 o - -pe = o - o 

8/\l0 

Figure  15.    Examples of Subtree Types:    (a)  Maximal Tree;   (b) Minor Trees 
(c)  Minor 2-Trees;   (d)  Minor  3-Trees. 
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Let us now examine the characteristics involving any two branches 

in the maximal tree,   say   b.    and   b   .     From the implicit characteristics 'In r 

of a tree,   there is a unique linear subtree connecting   b.    to   b      such that n °      1 n 

b.    and   b      define the two end branches in this linear subtree.     This 
1 n 

general case is shown in Figure  16a   where the linear subtree branches 

connecting   b,    to   b      are termed Section A,   and where the minor trees 6      1 n 2 

connected to the linear subtree nodes are termed Section A.,   Section B-,, 
1 2 

Section B,,   .  .  .  ,    Section B   ,   and Section A     respectively proceeding from 

left to right as indicated.    Assume that all tree-branch chains are thrown 

in the convenient manner indicated in Figure   16a   such that: 

1. All chain-defining regions of Section A.   are contained in 

region b.   and are disjoint from region b   . 

2. All chain-defining regions of Section A     are contained in 

region b     and are disjoint from region b. 

3. All chain   defining regions of Section A-,   contain either region 

b      or region b,    but not both. 
n ö 1 

4. All chain-defining regions of Section B.    are disjoint from 

both  region b,   and  region b 

s c 
Under these assumptions,     Y takes the partitioned form of matrix (15). 

(A complete,   simplified partitioned example is  shown in Figure 16b  where 

n   has been set equal to   6   )    In matrix (15), 
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Y 
sc (15) 

Az\ 

only the  signs of immediate interest are indicated.     In analyzing matrix (;5): 

note that the branches may be grouped into two sets: 

Set 1,    where all branches   i    have    s..  =  s   .  ; 
li m 

Set 2,    where all branches   i    have    s, . 1 s   .   . J lj nj 

This grouping yields 

Set 1   =   Sections B.  =   Section B  ; 
l 

Set 2   =   Sections A.,   A,,   A   ,   and branches   b.   and   b 1        2        n 1 n 

No elementary operation will destroy this grouping.    One group will always 

consist  only of Section B,   while the other group contains the  remainder 

regardless of how the chains were thrown.     The most important element 
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Figure  16.    General Tree     (a)   and   (b) Example    Y for   n = 6.     (Heavy 

line in general tree diagram represents Section A?.) 
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in this process is    s .    .   since it determines which set is Section B,   and r In 

which set is Section A..   A,,   and  A   .     As for the limiting case,   if Set  1 
12 n b 

is void,   then branches   b.    and   b      form a linear minor 2-tree together In B 

with Section A,;   if Set 2   consists only of   b.    and   b   ,   i.hen those two 2 ' 1 n 

branches have a node in common and form a star subtree.     In either of 

these limiting cases,    b.    and   b      may be merged appropriately.     Thus 

in a sign matrix,   two rows,    i   and   j ,   effectively partition the  sign matrix 

as indicated in matrix (15) due to the grouping of signs    s.,     and   s.,  . 

Continue this partitioning by examining the corresponding sign 

relations that exist between any branch   b,     in Section B.   and either 
' b l 

branch   b.    or branch   b   .     Branch   b,     has been labeled in Figure  17 
1 n b ° 

yielding a grouping,   similar to Equation (16),   as follows: 

b.    and   b,      ( 

Set 1      b.,   b,   ,     Sections A.,   A,.,   B. 1       b 1        21        i\ 

Set 2b,    Sections A   .   A,   ,   B.,   B. n n        2n       j        ix 

(17a) 

b      and   b,      \ n b 

Set 1      b   ,   b,   ,     Sections A   ,   A,   ,   B. n      b n        2n        lv 

Set 2      b. ,    Sections A.,   A,.,   B.,   B. 1 1        21        j        ix 

17b) 

where 
b,     e   Section B.  , 

b l 

i/j     , 

Sections   A? .    and   A?      are those portions of   A?    comprising 

part of the linear subtree connecting   b,     to   b.    and   b      respectively; 
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Figure 17.    Example of   b      Branch,    (a) Branch   b,    as It Appears in 
General Tree,    (b) Branch   b,    as It Appears When   b,     and 
b.    Define the General Tree. 1 
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Section  B.        represents   the   branches of minor tree   B.    that 
IV 1 

comprise a portion of any linear subtree that has branches   b,     and   b . 

or   b      as two of its components; 
n 

Section   B.       represents the branches of minor tree   B.    that are 
ix r 1 

not contained in Section B.   . 

Once again,   no elementary operation will destroy the grouping of Equation 

(17a) or (17b).     Note that branch  b,   ,   which is any branch in one of the    B. 

sections,   becomes any branch in minor tree    B.    for this analysis.    Com- 

sc 
bining the results of Equation   (17a) or (17b)   with    Y     ,   Equation (15),   the 

sign matrix may be further partitioned as follows: 

A.   and  A,. 1 Zl 

YSC   =   A     and  A, s n Zn 

B. 

B.     and  B. 

"♦! -1 + 
1         I 

—h~l—   

+ + - - 
»        I 

-i s. N N s. i 3 

+ N S? N S4 
— ■h- 

+ + 

- - N N + N 

S. S. N 
1     1      J 4 

.._ — 
(18) 

rsc Note that    Y        of matrix (18) was developed in two independent ways 

simultaneously.    First,   if the network tree was given with the chains thrown 
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correctly,   it was immediately known.    Second,   with just the matrix given, 

comparing signs yielded the labeled partitions,   after which the signs in 

rows   b.,   b   ,   and   b,     were iixed to conform with the first method by 
1       n b ' 

multiplying the appropriate rows and columns by minus one.    Making these 

signs conform guarantees that all chains were correctly thrown.    Having 

been reduced to this form,,   matrix (18)  vividly presents the first criterion 

fuj.   realizability as stipulated by the  sign alone  — all the  signs in the partitions 

labeled   N   must be negative.     The appearance of any positive  signs in the 

N   partitions indicates a geometric contradiction,   as can be seen from 

Figure 16,   and hence an unrealizable network. 

Sign matrix (18) may be now further partitioned to separate   A. 

from   A.,.,    A      from   A-,   ,   and   B.    from   B.   .     These separations will ZI n Zn j ix 

provide the remaining sign criteria   for   the   matrix to be realizable with 

respect to sign.     The following separation is based on the original assumption 

that the chains were thrown correctly,   an assumption that is guaranteed by 

fixing the signs in rows   b.,   b   .   and   b      of matrix (18). 

Z. 31     A .    and   A-,, 

All   A?.    regions contain each other and contain all   A.    regions. 

Therefore,   from matrix (18) any row through    S.    having a minus sign in 

SA    must belong to   A .    along with the corresponding column.     Each minus 

sign therefore specifies two    A.    branches.     This essentially restricts 

particular branches from belonging to   A-,.,   since a branch may exist in 

A .    yet have no corresponding minus  signs in   S. .    Any branches that con- 

form to this latter situation exist together with   b.    as a minor   Z-tree 

where one of the two  ''split11 nodes connects   b,    to   A,,    and the other con- 

nects one of the conforming   AA    branches to the  remaining branches in   A. 
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All   A.    regions are disjoint with all   B    regions; therefore any row 

through   S.    having a plus sign in   S,   must belong to   A-,..     This essentially 

restricts particular branches from belonging to   A.,   since a branch may 

exist in   A-, .    yet have no corresponding plus signs in   S,.    Any branches 

that conform to this latter situation exist together with   b.    as a minor 

2-tree where one of the two  ''split'1 nodes connects    b.    to   A.    and the r 11 

other connects one of the conforming   A,,    branches to the remainder of 

the network. 

Any row through   S.    having a minus sign in   S.    and a plus sign 

in   S.,    represents a contradiction,   hence an unrealizable network.     This 

branch was relegated to the   A.    and   A?.    partition by columns   b.,   b   , 

and   b,     but is restricted from belonging to   A-,,    by   S.,   and from belonging 

to   A.    by   S..,   therefore the contradiction 

Any rows through   S.    having no minus signs in   S,,    and no plus signs 

in   S-    can be assigned to   A.    or   A, .    only by comparing appropriate    y . 

magnitudes.     Branches   x   illustrating this are shown in Figure  18.     These 

ul                       X                          X 
> o o o 

w b„ 

K 
CJ 

OJ 

A 

Figure  18.     Examples of Branches Requiring Comparison of Magnitudes 
to Determine Correct Position. 
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branches may be separated by comparing    y..    magnitudes in,   for example 

column   n    since    y. .   3 y.      3 v,    .   where    i    and   k   are  rows belonging ' 11 —     In —   'kn 6    6 

to   A-,,    and   A.    respectively.    At. the conclusion of this step,   matrix (18) 

becomes 

,sc 
21 

A     and  A, n Zn 

B 

B       and   B. 
IX j 

r+l.l ♦ k 1 "11 "4"! -t+r 
~t\ P           N        -         N           N 

+ 1 -     p P          N       -        N         S, 

_    '    4-    1      N N          S^       - '      N          S„ 

-tf- 
2   1                             4 

-t+.- --t--hh-h- N           N        + 1              j      N 
.  1   1 

1 -t—Hi—h 
LTl N S

3    [    S4   !   - |     N    | 

where the added partition has been drawn heavy    the partitions labeled   P 

contain all positive  signs,   and    T       is the  sign partition dealing exclusively 

with the minor tree    A 

2. 32     A      and   A, 
n 2n 

All   A,       regions  contain each other and contain all   A       regions. 2n b n 6 

Therefore,   any row through    S -,    having a minus  sign in   S-,    must belong 

to    A      along with the corresponding column.     Each minus  sign thus  specilies 

two   A      branches.     This essentially restricts particular branches from n 7i- 

belonging to    A,        since a branch mav exist in   A      vet have no corresponding b     ö 2n n    ' r- © 
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minus signs in   S?   and any such branches will exist together with   b^   as 

a minor   Z-tree,   where one of the two  ''split11 nodes connects   b      to   A-, r n Zn 

and the other connects one of the conforming   A      branches to the remaining 
°       n ° 

branches in   A   . n 

All   A      regions are disjoint with all   B    regions; therefore,   any 

row through   S?   having a plus  sign in   S.    must belong to   A-, This 

essentially restricts particular branches from belonging to   A   ,   since a 

branch may exist in   A-,      yet have no corresponding plus signs in   S., 

and any such branches will exist together with   b      as a minor   Z-tree where 

one of the  "split11 nodes connects    b      to   A      and the other connects one 
n n 

of the conforming   A-,      branches to the remainder of the network. 
°       Zn 

Any row through   S-,    having a minus sign in   S?    and a plus  sign 

in   S.    represents a contradiction and hence an unrealizable network.     This 

branch was relegated to the   A      and   A-,      partition by columns    b.,   b   , 
° n Zn ' In 

and   b, ,   but is  restricted from belonging to    A,      by   S-,    and from belonging 

to   A      by   S.,   hence a contradiction. n      '      4 

Any rows through    S-,   having no minus  signs in   S-,    and no plus 

signs in   S.    can be assigned to   A      or   A?      only by comparing appropriate 

y. .    magnitudes.     Branches   w   corresponding to this  situation are shown 

in Figure  18.    These branches maybe separated by comparing   y. .    magni- 

tudes in,   for example,   column 1,   since     v..    D    v.       3   v,     ,    where    i r     ' 7il   —    'in   —    'kn 

and   k   are rows belonging to   A?      and   A      respectively. 

At the conclusion of this step,   matrix (19) becomes 
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,sc 
A 

21 

A 

B. 

B      and B. 
IX i 

+ 

-+ 
+ 

+ I 

-4--4---M 
N 1  -   ,   N 

4.-IJU 
P  1  -   1   N 

"I 

-   |T1|   P|N 

1       "•         1 
•fP4-T- 
+   ,    N      N  1   P 

N 

S3 

S4 

- +       N  '   N      P T        -       N 
n 

N 

- - +       + - 

- N      N      N N     + N 

L  1 
-   .   N 1 S3    S4 N       -      N 

(20) 

where the new partitions have been drawn dark,   and   T      is the  sign partition 

dealing exclusively with minor tree    A   . 

2.33     B.    and   B. 
J I* 

Seccion   B.   consists of minor trees to the left of   B.    and minor trees 
.1 1 

to the  right of    B.    as  shown ir Figure  16.     Any row in the    B.    and   B. 5 1 s j IX 

partition with a plus  sign in    S,    belongs to a left-hand   B.    minor tree and 

any row with a plus  sign in    S.    belongs to a  right-hand    B.    minor tree. 

In addition,   if   A,,    is not empty,   then there must be a branch in   A,. 21 r  ' 21 

whose  signs in    S,    are positive for every branch belonging to a left-hand, 

B.    minor tree,   and negative for every branch in    B.       or in a  right-hand 
J ix b 

minor tree.     If   A,       is not empty,   then there must be a branch in   A, 
2n r  ' 2n 

whose  signs in   S.    are positive for every branch belonging to a right-hand 

B.    minor tree,   and negative for every branch in    B.       or in E. left-hand 
J i* 
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B.    minor tree.     Naturally,   if   A, .    is empty,   then no left-hand   B.    minor 

trees exist;  similarly if   A?      is empty,   no right-hand   B.    minor trees 

exist.     The converse does not follow.     Each branch in   B.      must have all 
IX 

n.. native signs in   S,    and   S.,   and the converse:   all rows through    S-,    and 

S„    with all signs in   S,    and   S.    negative must be a    B.      branch.     This 4 3 4        6 ix 

process separates Section B   into three parts; a "central'' minor tree    B. 

that is comprised of   B.   ,   B.   ,   and   b, ,   the Section B   minor trees to the r ix        lv b 

left of   B.,   and the Section B   minor trees to the right of   B.. 

Any row through   S..    and   S.    having a plus sign in   S~    and a plus 

sign in   S.    represents a contradiction and hence an unrealizable network. 

This  row i& simultaneously assigned to both left-hand and right-hand minor 

trees,   an obvious impossibility. 

At the conclusion of this  step,   matrix (20) becomes: 

/ 

L21 

rsc =   A 2n 

A n 

B. 

B.T 

B 
JR 

+!-» + ! + ' 
4+-i-4-++4-+-T- 
+ J-f f + + - + ' -  I T,   I    P   I   N   .    N        N        N 

-t^1-T- + -H-hf + '-,PlPNN,N       S,       f 

-H^f -+■ + -+■- -   +  ,    N   I    N        P        P        N 

-1 + ,   N   I    N   '   P   ' T     'N       I\        IN 

T-T-V+H-- •   N   '   N   '   T.        N        N N   I   N   '   N 

N   '   S     I   N        N        N 

\ 

N       N      S4 |   N   |   N 

D, 

N 

\ 

N 

N 

S4_ 

N 

N 

D 2 

i 21) 

where the new partitions have been drawn with heavy lines and   T.    is the 

sign partition dealing exclusively with minor tree    B. . 
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2. 34     B.    Minor Trees 
J 

In step 3,   Section B   was partitioned into fnree parts; a central 

minor tree   B. ,   a left-hand set of minor trees   B.T   ,   and a right-hand 
l jL 6 

set of minor trees    B.R .     This fourth step consists of separating the 

minor trees in   B.T     and   B._ .     Each one of these minor trees is con- 
jL jR 

nected to the maximal tree through a unique node in the   A?    linear s ib- 

tree.    The    B.T     minor trees are connected to nodes of the   A,,    linear 
jL 21 

subtree and the   B.,-.    minor trees are connected to nodes of the    A-, 
jR 2n 

linear subtree.     To separate these minor trees,   examine   S~   and   S. 

in detail.     In matrix (21) the columns through   A?.    and   A?     that have plus 

signs only for the rows through   B..     and   B respectively, have been 

placed in evidence next to the line dividing   A-, .    from   A,    . r &       2i 2n 

All the rows corresponding to the unique   B..     minor tree con- 

nected to a unique   A-, .    node must have the same number of positive signs 

in   S, .     No other minor tree connected to a different node can have that 

same number of positive signs per row in   S, . 

All the rows corresponding to the unique    B.R    minor tree con- 

nected to a unique   A,      node must have the same number of positive signs 

in   S. .     No other minor tree connected to a different node can have that 4 

same number of positive signs per row in   S. . 

These last two statements follow because each of the unique   B.T 

minor trees connects through a unique node in   A?.    and therefore all of 

each minor tree's regions are contained in a unique number of   A-, .    regions 

(plus signs in   S,.) and disjoint with all other    A?.    regions (minus  signs 

in   Sn).     The same concept holu..  for   B.T-,    minor trees,    A.,      regions, 
3 jR 2n        b 
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and   S„       Thus the  rows of   B.r     and   B.„    may be ordered according to 
4 j Li jK ° 

the number of positive signs per row in   S.,    and   S      respectively (obviously 

this ordering can proceed according to the negative signs per row just as 

well) and partitions introduced to separate the sets of rows having the 

same  sign per row distribution.     This partitioning extends through   D. 

and   D7    in matrix (21)   such that the new diagonal partitions within   D,, 

and   D,     deal exclusively with each   E.T     and   B.,-,    minor tree.    All of 
2 jL jR 

the new off  diagonal partitions in   D.    and   D?   must be entirely negative 

if the matrix is unrealizable as to sign.     This is shown in matrix (22). 

The columns through    S,    and   S.    can also be ordered because 

any   A   .    columns through   S,   with the  same number of plus signs in 

S~    comprise a linear minor   2-tree.    Also,   any   A-      columns through 

S ,    with the same number of plus signs in   S,    comprise a linear minor 

2-tree.     This means that there are no   B.    minor trees connected to »"he 
J 

nodes that connect the branches of these linear minor   2-trees together 

When the columns and rows of   S,    and   S.    have been ordered according 

to the above,   all the positive and negative  signs must be separated in the 

stepwise manner suggested in matrix (22).    All the plus and minus  sign? 

in   S.    and   S .    must be completely separated in this stepwise manner 

or the network is unrealizable.     In matrix (22),   the   B.T     minor trees 
jL 

have been labeled B-., B.,, . . . , B. . , and the B._ minor trees have 
2        3 l-l jR 

been labeled   B.    . ,    B.    ,,...,    B      to conform with Figure  16.    Cor l+l"        i+2 n ° 

respondingly,   the diagonal minor tree partitions are    T,,   T,,   .... 

Ti-1'    Ti+1'    •   •   •   ■    Tn- 
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N 
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N 

N 
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Thus it is relatively easy to complete the partitioning of the sign 

matrix. To place the matrix in a master form, reverse the direction in 

which the    b.    and   A, .    chains were thrown by multiplying partitions    b. 

and   A-, .    by minus one, and rearrange the partitions to conform more 

s c vividly with Figure  19   resulting in    Y. .<-,   in matrix (23).     In Figure 19 

Section A-,    is composed of branches    b-,,   b.,,   b.,   .   .   .   ,   b      .  . 2 r 2       3      4 n   1 

In Figure  19   we are viewing the general network tree as a com- 

bination of several minor trees attached to the nodes of a linear  subtree. 

Branches   b.    and   b      specify the extreme branches in the linear  subtree. 
1 n 

Minor trees   A.    and   A      are attached to the extreme nodes of the linear 
1 n 

subtree.     Minor tree    B.    is attached to some node between branches    b. 
l 1 

and   b    .    Section   B. ^    contains the several minor trees attached to the n jR 

linear subtree nodes lying between those that join   A .    and   B.    to the 

linear subtree.     Section   B.T     contains the  several minor tree» attached 

to the  linear subtree nodes lying between those that join   A      and   B.    to 

the linear subtree.     The reasons for viewing the general tree as pictured 

in Figure  19   are very logical.     First,   from the basic definition    between 

any two branches there is one unique linear  subtree connecting these two 

branches.     These two branches we have called   b.    and   b    .   and the linear 1 n 

subtree is uniquely Section A?  .    All the remaining branches must exist 

as  sets of trees connected only through   A, .     These sets we have called 

A. ,   A    ,    and   B,  where    B - B-, ,   B, ,   ...,   B    . In 2 3 n 

Two points  remain to be discussed      The first concerns the order 

of branches in the   A. ,   A    ,    and   B.    partitions,   and the  second concerns In l   r 

the order of linear minor tree branches appearing in the partitions. 

Although this ordering does not affect the criteria   for realizability based 
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Figure  19.     (a) General Tree Form and   (b) Matrix. 
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on the signs alone,   it will prove indispensable for  realizability as far as 

magnitude is concerned and for placing the network tree in more immediate 

evidence.     First,   it is desirable to order the branches in the diagonal 

minor tree partitions  so that they comprise a miniature reproduction of 

s c the composite matrix    Yj. <, ,   in which the first row in each diagonal 

partition,   a branch like   b    ,   corresponds to the branch that attaches 

the minor tree to the node in the linear  subtree composed of branches 

b. ,   A- ,    and   b    .     This is very easily accomplished merely by treating 

the submatrix composed of the minor tree  rows and the closest   A?   branch 

as the matrix to be ordered,   with the   A,    branch taking the branch   b. 2 ° 1 

role.     The closest   A-,    branch in this case is either of the two vertical 

A?    rows that define the step in the plus-minus  staircase where the rows 

forming the minor tree comprise the landing 

Secondly,   it is desirable to order the   A?   branches  such that the 

columns (and rows)  read as the branches exist in the linear subtree.     The 

only problem encountered is that of a linear minor   2-tree therein.    A 

linear minor   2-tree is characterized by a set of rows indistinguishable 

in sign.       To place them in proper order,   it is necessary to  revert »o a 

study of magnitudes.     If branches    i  . . .   k   comprise a linear minor 2-tree 

within the   A?    linear subtree in order proceeding from branch   b.    to 

branch   b    ,   then n 

r.       D   .   .   .   Dy 
ix    — — ' 

and 

kx 

y.      C     ■   •   ■ C  y, ly   — —     ky 
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where   b      is any branch on any linear tree including branches 

situated on the branch   b,     side of    1   . .      k     and   b      is any branch O" any 
1 y 

linear subtree including branches    1  .        k    situated on the branch   b      side 

of   i   . . .   k . 

A natural question that arises concerns the necessary number of 

partitions.    If branches    b.    and   b      were discretely chosen such that r In 

they met at a common nods    then the only nonempty partitions would be 

b. •    b    .    A. ,    A    ,   and the  single minor tree    B.  .     This  is the most, basic 
1        n 1 n i 

partitioning obtainable,   and it is only obtainable through exercising dis- 

cretion in choosing branches    b.    and   b This  reduced matrix is,   from 6                              In 

matrix (22), 

Y 
MS 

bl     + H + 

T*   A A4 

T 
Bi 

An 

(24) 

This general reduction cannot be carried lower than five partition-; and 

there is only one way to  reduce the matrix to five parti*ion' .     In matrix 

(24),   rows    b. ,    b    ,    and   B      specify all the remaining off  diagonal signs 

here the only remaining sign is the    A        A      entry.    At this point it is 

interesting to compare matrix (24) with matrix (13)      Note that the '.owest 

order    Y that may be unrealizable is also five; e   g       the  same order 
s ' 

as the minimally reduced master  sign matrix.      If the trees    A.      A and 
' 6 In 

B     in matrix (24) are  reduced to single branches,   the diagona1  entries 

automatira' iv become plus  signs a->d the three reference branch'-?    b,      b 
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and   b,   = B.    specify the one remaining sign,   which in matrix (13) has been 

changed to plus,   thus  rendering the matrix contrary to the master  sign 

matrix and hence unrealizable. 

2. 4   Specification of Zero Entries 

A careful analysis of the preceding material points out one of the 

characteristics that makes the complete short-circuit admittance matrix 

unique.     The prominent characteristics,   which, as we  shall  see,   are absent 

in the complete opeii-circuil impedance matrix,   are that the  signs completely 

determine the network tree topology,   and that each and every entry has an 

associated sign,   even though the magnitude of the entry may be zero.     Thus 

when an admittance matrix is presented with many unspecified entries,   the 

correct signs of these entries should be determined first,   and then limitations 

placed on their magnitudes.     In other words,   this realization problem has 

a very definite analysis phase of its own. 

In rearranging a given matrix to conform with    Y. .„    in matrix (23), 

the preceding procedure utilized only a fraction of the total number of 

possible signs.    Only those signs that influenced the determination of the 

final partitions were used.     Once these partitions were rigorously established, 

all signs were fixed.     Thus the first step in sign assignment is to establish 

each and every row within a unique partition.     This problem may be described 

s c 
as follows:    In the determination of    Y. .,-.    in matrix (23) and Figure  19 

through the presence of   "arbitrary'' unspecified entries,   the established 

signs may relegate a branch (row) to either Section B..   or   B .    and yet be 

unable to specify exactly its unique assignment.     To specify this  row's 

unique position,   it is necessary to examine the magnitude relationships 
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that may preclude its  existing in    B .,    or in    B,        For example     if this 

ambiguous  row is   b,     and if   v, ■   C    V,        does ^ot hold for a1.'   j      1     m & k kj   —    Mm 

where   b     and   b       are any branches in   Br .,   B, B    .,   A    ,    then   b, j m 5 6 r.        r. k 

cannot belong to Section    B . .    Although formally requiring a very lengthy 

and tedious enumeration,   such useful magnitude relationships become evident 

upon understanding of the pr -ceding material 

Once the partitions are fixed,   the network tree is  determined and 

the realization of the physical elements proceeds in a straightforward 

manner.     These elements may be obtained directly as shown in the first 

section of this chapter,   or they may be obtained in an algorithmic fashion 

by transforming the matrix such that the new network !r»p is a  s'ar trs» 

As a star tree,   each off   diagonal entry is the admittance of a single,   unique 

branch.     This method 1?  p^rhap^ more applicable to computer synthesis. 

Since the partitioned matrix presents the -etwork tree in a perceptible 

algebraic manner.,   the matrix to transform it. into a  star   tr»1 configuration 

is obvious 

2   5     Discussion 

The preceding gen- ra'   synthesis method for RLC  sl'cr'   circuit 

admittance matrices is most 'isefu: for large   seal- problem solution and 

computer synthesis.     This  method    with a different Interpretation     also 

has been developed ind;. pe~denti v for resistive retworks  by Bior-i a~d 

Civalleri        Besides presenting an alternative interpretation a^d develop 

merit of the general method    this  synthesis is not restricted to single 

element   kind networks but u&es general RLC  (excluding mutual  inductance) 

networks.     The inclusion of these three basic  elements does ro*   :omp!icate 



the problem a:3 much as might be suspected.     In some cases it may actually 

simplify matters since it forces a more articulate interpretation of quant:tivs 

much of   /hose intrinsic nature is camouflaged in the single-element-kind 

discussion. 
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III.    THE OPEN-CIRCUIT IMPEDANCE MATRIX 

3   1     Analysis 

The complete open-circuit impedance matrix is formulated to des- 

cribe the response of a network to excitations in terms of a complete set of 

independent branch currents.     This analysis is identical to the admittance 

analysis with the natural interchange of dual quantities.     The independent tree 

branch voltages become the independent co-tree branch currents.     The appli- 

cation of Kirchhoff's current law to a current region becomes the application 

of Kirchhoff's voltage law to a voltage circuit.     In either procedure,   the net- 

work is represented or modeled by its network graph.    When the tree is 

specified,   the elements of the co-tree,   or chords,   automatically define a 

complete set of independent branch currents.    A branch orientation is assigned 

to each chord.    A voltage circuit,   which is defined by an independent branch, 

may traverse one and only one chord and thus the   1      circuit is uniquely 

f Vi 
specified by the assigned set of chords and specification of the   i      chord. 

Consider the network graph of Figure 20   where the lines represent 

Figure 20.     Example Network Graph with Independent Currents 
Based un Co-Tree. 
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generalized branches that are numbered and meet at the junctions or nodes 

Assign branch voltage directions and select an arbitrary co-tree such as 

indicated in Figure 20.     (For a particular branch,   the direction of branch 

voltage rise is opposite to the direction of branch current flow. )    The chord 

currents (that is,    J. ,    J? ,    . . . ,    J7 )   become the set of independent branch 

currents and appear in the final open-circuit impedance equations of the 

network. 

The facts describing the network may be presented in the form of 

a CircuitTable.     Let the orientation of a circuit proceed in the direction 

defined by the branch voltage of the independent branch.     Then each entry 

in the Circuit Table is    +1    if the branch voltage rise is in the direction of 

the circuit orientation, and    -1    if it opposes the direction of the circuit 

orientation.     As an example,   consider the CircuitTable for Figure  20 

Circuit Table 

Circuit Branch Numbers 

12     3     4     5     6     7       8       9      10     11     12 13     14     15     16 

1 100000000-110 0000 

2 0100000   0   0   10   1 1   0   00 

3 0010000   0   0   00   0 1110 

4 000100000000 00   1-1 

5 0000100   0-1-1  0   1 0-1   0   1 

6 0000010-1000   0 0000 

7 0000001-1   0-1-1   0 0   0   0   0 
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When developed in this manner, the columns of the ircuit able relate the 

branch currents in terms of the independent branch currents. Considered 

as a matrix,   this table means that 

ßtJ (25) 

where   t   stands for transpose,   and 

16 

J = 

1000000 0 0-11 0 0 0 0 0 

0100000 0 0 10 1-1 0 0 0 

0010000 0 0 00 0 1 1-1 0 

0001000 0 0 00 0 0 0 1-1 

0000100 0-1-10-1 0-1 0 1 

0000010-1 1 00 0 0 0 0 0 

0000001-1 0-11 0 0 0 0 0 

The rows relate Kirchhoff1 s voltage law to the loops in so far as just the 

passive network branches are concerned.     This means that 

ßv   =   0 (26) 

The branch voltages may also be written as 

where 

zz        ° 

'16 

E'  + v   =   z(j + I') 

E 16 

l16 

(27) 

lb 
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th and   z.    is the driving-point impedance in the   i      branch.    Combining 

Equations (1) and (3)   gives 

v + E'   =   z(j + V)   =   zß   J + zV U8) 

Multiplying both sides by   ß   and using relation (26)  gives 

ßv + ßE'   =   ßE'   =   ßzß   J + ßzl' 

or 

ßE'   - ßzl'   =   ßzßtJ 

Since    ßE'   - ßzl1    replaces all excitations by voltage sources in the ind 

pendent branches,  it becomes 

E   =   ßzßtJ   =   Z      J (29) 

where 

E   = 

,oc 
and where    ßzß     -   Z is the common complete open-circuit impedance 

oc matrix.     Here    Z is called complete because it completely describes the 

response of the network in terms of the independent branch currents.     I* is 

o c 
called an open-circuit impedance matrix because the    ij    entry    Z..      equalj- 

E./J.   with all   E.   ,.      assuming such values as are necessary to set all 
r    j k? l 6 ' 

J,   , .  = 0 :    When these conditions are fulfilled,   all tree branches except  thu 

j       branch may be open circuited without disturbing the state of the networ.< 
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For a better understanding of these concepts,   carefully examine the Circuit 

oc Table,   Figure 20,   and the impedance matrix   Z This  study involves the 

oc Z..       entry and shows the following: 
ij 

oc 1. Z..     is the unique sum of branch imoedances    z,   . 
JJ k 

oc 
2. The several   z,     appearing in the    ij    sum,   Z..   ,   are the impedances 

K ij 

of those branches common to both voltage circuits    i   and   j . 

oc 3. The signs of the    z,     comprising   Z..     will be plus if the orien- 
k XJ 

tations of voltage circuits    i   and   j   are alike through branch   b,  ,   and will 

be minus if the orientations of voltage circuits   i   and   j   are in opposition 

through branch   b,   . 5 k 
oc 4. The    Z..'    entry is zero if voltage circuits    i   and   j    do not have 

a common branch voltage. 

5. Since the circuits are based on a set of chords (and thus on a 

oc tree),   all the  several    z,     comprising the sum   Z..     will have the same sign 
K ij 

6. If branch   i    is a co-tree branch, then z.    will appear only in the 

„oc Z..      sum. 
li 

The conclusion drawn from the above is that given any network and a co -tree 

(and thus necessarily the branch source voltages and response currents), 

the open-circuit impedance matrix follows immediately.     Note that orienting 

the tree branches has no effect on   (1) the circuit, orientation,    (2) the matrix, 

and   (3) this analysis. 

A tree has many interesting properties that provide the necessary 

uniqueness along with the general approach.     Here it is appropriate to give 

warning of a possible misconception.     In the impedance analysis the network 

tree is a peculiar artifice.     It must be used and considered cautiously 

because the voltage circuits form the paramount basis in impedance analysis 
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not the tree.    The tree is used merely as a convenient and useful tool to 

prove many relationships.     The tree,   however,   is secondary in importance 

to the co-tree.    In this analysis,   the co-tree defines the tree,   rather than 

the reverse,   which is the case in the admittance analysis.     It is convenient 

to use the tree in the following discussion of circuits; however,   one should 

not be misled as to its importance.     Let a co-tree and its tree be selected. 

Although a large number of different trees exist in the network graph,   each 

and every tree will conform to a general form shown in Figure 21.    Select 

any two tree branches,   b.    and   b . .     These two branches together with their 

unique connecting tree path form a linear subtree.    This linear subtree will 

be called the general linear subtree (for the selected two branches) to 

distinguish it from the several other linear subtrees existing in the tree. 

^ M 
b^ if 11 i 

i 
s    Qi / 

7/b / / / i 

bA bB 

TREE   BRANCHES 
 CHORDS 

Figure  21.     General Tree.      General linear subtree   =   n    ,    b. ,    n. ,    b, ° o 1 1 2 ' 
n, ,    b0 ,   n,      b. ,   n. ;   general minor trees   -   M    .    M. ,    M, 2'334'46 o 1'        2 
M    ,    and  M . ;    chords defining Type A   circuits   =   b.  ; 

chords defining Type B   circuits   =  bR . 
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Let this  general linear  subtree have    p    branch« E       The remaining tree 

branches may be divided into   p +  1    groups     such that  each group forms 

a minor tree connected to the whole by one of the   p + 1    general linear 

subtree nodes      There minor trees are said to connect to the g^reral linear 

subtree by their trunks,  that is,   those branches of a general minor tree 

that are incident on a node of the general linear subtree are the trunks of 

a general minor tree      Let the tree    in this general form    be drawn in a 

planar manner as indicated in Figure 21      Each of the remaining network 

graph branches,   or chords,   occupies a unique position specified by designating 

two nodes    which the chord connects     in the network tree      Each of these 

chords define-  an independent br^n:h current and voltage circuit that tra- 

verses that chord and some unique linear subtree within the general tree. 

Any circuit may be distinguished by designating it as: 

Type A:    A circuit that tiaverses a  set of branches belonging to the 

general linear subtree    that is,   its defining chord connects two different 

general minor trees. 

Tvpe B :   A circuit that traverses no branch belonging to the general 

linear subt ree . 

In assigning orientations to the chords,   it i= convenient to adopt the convention 

of letting all Type A   circuits traverse branches ir  *he ganp"al lir   a r  'ubtr--- 

in the   same direction      Now the matrix may be produ'ed 

Each   ij    entry in the matrix contains information concerning 'he 

branches common to circuits    i    and   j .     If two circuits       i    and   j      have a 

linear subtree in common    then the magnitude of that    ij    entry is ths  sum 

of the impedances  represented by *hal  linear subtree.    The  sign of tUa* entry 

is positive if the two circuits are in     phase''  | same directio-; *hrough that 
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linear subtree,   and negative otherwise.     Note that if two Type A   circuits 

traverse a common portion of the general linear subtree,   the sign is positive. 

If two circuits have no linear subtree in common,   then the entry is zero. 

Proceeding in this manner,   the open-circuit impedance matrix can be 

written by inspection. 

Before proceeding in the reverse direction (that is,   obtain the net- 

oc work given a    Z matrix)   it is worth while to take a close look at certain 

characteristics of a set of entries corresponding to a set of circuits.     Let 

all the Type A  circuits (Figure 21) traversing some portion of the general 

minor tree   M«    be numbered    1,   2,   . . . ,   r .    Each   ij    entry in the open- 

circuit impedance matrix,    i,   j f   (1,   2,   . . . ,   r),   is positive and bounded 

in magnitude from below by the impedance of branch   b. ,   z. If   z is 
1        bl bl 

subtracted from all   ij    entries,    i,   j e  (1,   2,   . . . ,   r),   the effect on the net- 

work in Figure 21   is to superimpose nodes   n.    and   n    ,   that is,   replace 

branch   b.    with a short circuit or zero impedance branch.     In addition 

oc select any square partition   Z of the open-circuit impedance matrix 

oc such that all the signs of   Z are positive and such that if any of the re- 
S PP H X 

maining rows and corresponding columns are included in   Z at least one 

zero or negative sign is simultaneously included.    Then the circuits cor- 

responding to the   p   rows and corresponding columns all traverse a common 

linear subtree.     This  statement will be proven in the theorems following 

The concepts considered here are critical because they form the primary 

tools in building a network to conform with a given open-circuit impedance 

matrix,    Z We now proceed to prove a number of lemmas and theorems 

concerning properties of the various types of circuits.     These theorems 

will be used in developing realization techniques. 
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oc Let   Z        be an impedance matrix based en the interaction of a sei 

of independent circuits    (\}     defined by a  set oi chords    {b   )    that comprise 

oc a particular co   tree       For an LLFPB network,   it is necessary that    Z  .' 
F ij 

can be written, 

n 

7. i a.   s 
l 

oc :     ± i = 0 
IJ m v—• 

L 
j=o 

b.   s-1 

J 

where    a. ,    b.   >.  0      and    s    is the complex frequency   o" +  jw .     In other words 
i J r ^ 

all entries are driving-point impedances times   ± '' 

oc 
Lemma 1.    Let    Z..'    be non-zero      Then circuits    \.    and   \.    traverse 

a common non-zero  set of branches and all the branches that circuit    V.    aid 
i 

circuit   \.    have in common form a linear subtree, 
j 

Proof.      Bv the definition of    Z..   ,   circuits    \      and   X..    have a ron 
  1J i J 

zero set of branches in common.     By the definition of a circuit,   the on'.v 

elements of a circuit, available for intersection (interaction) with another 

circuit, form a tree path that, is by definition a linear subtree.     Therefore, 

oc if   Z..     is nonzero and all the elements that, circuit   X..    and circuit   X. 
ij * J 

have in common do rot form a linear  subtree,   then they must form a  set 

of two or more linear  subtrees that are rot. connected.     If this is true    th^n 

there are two different tree paths,   one on   V.    and one on   \.      that connec' 
l i 

two different tree nodes,   one of each of two of the  sets of common linear 

subtrees,   contrary to the definition of a tree. 

oc 
Lemma 2.    If    Z..      is non   zero,   then circuits    X.    and   \.    ran be 
 11 il 

oriented such that the  sign of    z. .    is positive 
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Proof:   Assume    Z..     is negative.     Multiply row i  and column i   by 

oc -1,   thus reversing the orientation of circuit   X.. .     Now the sign of   Z.. 

is positive. 

Lemma 3.    Let    {\ . ,   . . . ,   X   }   be a set of   n   circuits that have the 

largest common non-zero linear subtree   b    .     Let each of the circuits 

{X . X   }   be oriented   such that all the si ens of   Z.. ,   where   X. , 1   1 n B ij l 

X.   €   (X.,   ...,   X   },   are all positive.     Then a circuit   X      that traverses j 1 n p 

a non-zero portion of each of    {X.,   ....   X   }   can be oriented such tnat r In 

the  signs of   Z.    ,   where   X.   €   {\   ,   ....   X   }   are all positive,   if and only & jp l v   1' '      n tr > i 

if circuit   X      traverses a non-zero portion of   b,   . 
P r X 

Proof:     Let   X      traverse a portion of   b.   .    Adjust the orientation 

oc of   X.      such that   Z .      has a positive sign.    Then all    z.    ,   where   X.   C p lp r 6 lp l 

{X, ,   ...,   X   },   are all  positive.     Let all    ZOC,   where   X.    C {\ .,   ....   X    }, 
J. n lp l 1 n 

have positive  signs.     Let   X      be incident on   X.      and immediately traverse 

a portion of a non-zero linear subtree.     Then   X      cannot cease traversing 
P 

branches of   X .    until after it has traversed a portion of all circuits in 

{X,,   . . . ,   X   } ,   since to do  so would imply either that    Z.       is zero or has in r ' ip 

negative sign,   where   \.  C    (X..,   . . . ,   X   } ,   or that there is a closed path 

of tree branches.    Since   b.     is the largest common linear subtree of the 
A. 

set of circuits    {X.,   . . . ,   X   } ,   then   X      must pass through a non-zero 

portion of   b.   . X 

Theorem 1:     Let    {X.,   . . . ,   X   }   be a set of   n   circuits.     Then the   1 n 

circuits can be oriented such that all    Z, .  ,   where   X.,   X.   C   {X.,   ...,   X   }, 

have positive  signs,   if and only if all the circuits    {X.,   . . . ,   X   }   have a 

non-zero common linear subtree. 

Proof:    Immediately known from direct application of Lemmas  1,   Z, 

and 3. 
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Definition:    The set   {pp }   and the matrix   I p" I :    Let a set of 

circuits    {\   }   exist such that all    Z..     are non-zero and such that all the 

signs of   Z..     can be made positive  simultaneously,   where   X. ,    X..    € {X   }. 
ij r '' l '      j a 

Let    {XR}   be another set of circuits,   not necessarily disjoint with   X    . 

From the matrix   Z delete all rows and columns   i,   where   X..    is con- 
l 

tamed in    {XR}   but not in    {X   } .     The set of circuits    {p    }    consists of the 

union of all circuits    {X   }   with all circuits    {X   }  ,   where the    {X   }   are a Y Y 

taken from the remaining circuits in   Z that are not in    |X   }    such that a 

the following conditions hold: 

1.     Z. .     is non-zero,   where    X. ,    X.   e   {p    }  . 

oc 2..    The  signs of all   Z..     can be made simultaneously positive, 

where   X. ,   X.    C {pß } . 1        J a 

3.     If circuit   X,    ^   {pp }   and the signs of   Zu."    are all positive, 

where   X. ,   X.   f   {p    } ,   then either some    Z, .     is zero or the signs of 
l j ra k; 6 

oc Z.,      are not all alike for all   i ,   or both, 
lk 

When no rows and columns are to be deleted in this process, then we say 

{XR}   =   cj>  =   the empty set.     The matrix    [p is the partition of   Z such 

that the circuits pertaining to the rows and corresponding columns of      p   I 

exactly comprise    {p    }; that is      P is that partition of   Z      ,   which des- 

cribes only non-zero interactions among the circuits {p } . A particular 

entry in P will be denoted by I p" . Note that in general {pP } is 

not unique. 

While this    {p    }    concept may seem a bit abstruse,   it is very simple. 

The set of circuits    {X   }    are seen to traverse a common,   non-zero linear a 

subtree.    This common subtree is composed of   n  >   1   branches.    Assume 

that there is only one branch in common,    b    ,   and that there is only one 
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other circuit,     \      that also traverses    b      and is not contained in    {\   } ; v a a 

then    {p" }   -   {X.   } + X    .     Now,   assume that there are three branches in 
a a Y 

b     =   b.,   b,,   and   b, .    Also,   assume that there are sets of circuits not a 1       2 i 

in    {\   };  that is,     {X.A?-I\'.    {X.^)-     i^2V '    ^4'»    and    {X.?}   that respectively 

traverse branches   b.  b, b, ,    b.  b, ,    b, b,,    b. ,    and   b,    (see Figure 22). 12312231 2 6 

Then there are two unique sets    {p^ }   as follows: a 

<!?£>   =   K}   +   {X123}   +   {X12}   +   {V • 

{2Pa}   =   {X123>   +   ^23}   +   {X2}  +   {X12> 

Figure 2.2..    Example Circuits for    (p^ }    Expansion. 
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For another example of this    {pP }    concept,   let    (Xß)   =   <J>     and 

consider a matrix   Z     .    First,   select a    {\   }   set.    Assume that the 

number of circuits in    {\   }    is    a .     Let the rows and columns of   Z        be a 

rearranged such that the first   a   rows and columns exactly correspond to 

the set    {\   }; that is,     {X   }   =   {.X.,   X,,   ...,   X   } .     The only stipulation 
& CL U C* a 

OC 
placed on   a    is that   a > 1 .     The present state of   Z is  shown in matrix (30). 

roc 

r 

V< 

V 

—1 
+ + + + 

+ + + + 

+ + \ + 

+ + + ...        + 

all + 

all - 

+  and - 

+ , ~ ) and zero 

_ 

;30) 

As  shown in matrix (30),   all the remaining rows not in    {X   }   may be 

separated into four mutually exclusive groups:    all rows   i    such that each 

„oc    .     , Z ..      l s f o r tk 

X.:    non-zero and has positive sign,    where   k   €   (X   } ; 

X?:    non-zero and has negative sign,   where   k   e   {X   } ; 

oc 
X0:    non-zero and such that at least one    Z.,      has positive  sign 

3 lK 

and at least one    Z.,      has negative sign,   where   k   6   {X   } ; 

X.:    zero,   where    k   €   {X   } . 4 a 
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Now multiply all   X,    rows and columns by    -1   and denote   X.  + X,   by the 

o c set    {X    } .     The state of   Z is now shown in matrix (31). 
V 

KH 

<y / 

(X3)   and    {X4}     j 

+    +    +    ...     + 

M 
- 

+ ,    - ,    and   0 

(31) 

From matrix (31)  it should be obvious that:    (1) each row in    {\   }   is in- 

eluded in at least one    {p    }    expansion;    (2) no row in    {X.,}u{X.}   is 

included in any    { p^ }   expansion; and  (3) the contents of the partition   M 

determine the character of each possible    {p    }    expansion.     Since an 

expansion    ip     }    is in general not unique,   let there be    n   such expansions 

denoted by     {.p    } ,   where   i =  1,   Z,   ...,)-;.     The i      expansion may then 

be expressed by: 

<i£>- V + '\> 
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and thus 

{$). v 
i = 1 

Note that for a given matrix,   the  set of expansions    {.p   }    is unique. 

In the example of Figure 22   there are two unique expansions 

{. p^  }   and    {,p   } .     Note that both expansions have circuits    {X   }   and llra 2ra * a 

{X.-,,}   in common.     To describe expansions whose only common member 

is the defining set    {\    },   the following extension is defined: 
a 

Definition:    a proper   a-set.     Let there exist   n  >   1    unique ex- 

pansions    {■ p    } ,   where   i = 1,   2,   . . . ,   n .    If   f    \ {. p" }   =   {X   } ,   then 

r      i i= 1 ~ 
\\   )    is a proper   a-set. 

Physically a proper   a-set has definite  significance.    From the 

definition of    {p    } ,   and thus    {X   }     and also Lemma 3.   there exists a 
a a 

unique non-zero linear subtree,   say   b    ,   which is the largest and is tra- 

versed by all the circuits contained in    {X   } .     To say that    {\   }   is a 
a a 

proper  a-set is equivalent to saying that    {\  }    includes each and every 

circuit that traverses   b      in its entirety. 
a ' 

Lemma 4:     There are no circuits other than those possibly con- 

tained in    {XQ }   that are not contained in the set    {p    }   and that traverse 
p ra 

a portion of the largest linear  subtree common to all the circuits    {X   j . 
a 

Proof:     immediately known from Lemma  3  and the definition of    {j    }   a 

Lemma 5:        p" =   z„ + Z..   ,   where    Z. .'    and   z      are driving - 
      Lai. P 11 ij P 6 

point impedances,   and,   in fact,     z      is the sum of the impedances in the 

largest linear subtree common to all circuits    {pP } . 

Theorem 2:     There are   X.    and   X.    such that      pp      is exactly the 
  i j L   aJij 

sum of the impedances and is the largest linear subtree that all circuits 

of the set    {p^ }   have in common. 
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Proof:       Let   Z      be the sum of the impedances of the largest linear 

subtree having terminal nodes    n.    and   n?    common to all circuits    {p    } . 

Assume that   X.    and   X..    do not exist.    Then by Lemma 5,   each     p''      = 

z     + z.\   ,   where    z.V       is non-zero.     Subtract    z„   from all entries      p" 
P        -'J ij P I   al 

thus  superimposing nodes    n.    and   n? .     Since all the remaining entries 

are positive,   non-zero,   there is another linear subtree common to ail 

circuits contained in    {p    }    by Theorem 1; hence,   a contradiction. 

Lemma 6:      Let the largest linear subtree common to the set of 

circuits    {\   }   be a single tree branch   b Then    {p1"  }   in unique, 
a ° a a ^ 

Proof:      Assume that    {p    }   is not unique.     Then there are at least 

two different sets,     {,P    }   and    {-, p    } ,   where 
la 2  a 

and 

^PaP>=   <\>>   +   {Z\}        ■ 

By the assumption that    { A   }   /   {-A   } ,   there is    X...     e   {.X.   }    such that 1 r 1   y     '       2   y Y^ly 

\v    £    {-.X   } .     Since   b      is the only branch common to    {\   } ,   then    {\„   } 
' 1 2   y a ' a ^1 

3 
must circulate through   b    ; therefore,     {X,,   }   £   {,p    }   and hence a contra- 

°        a Yi 2ra 

diction. 

Theorem 3:     Let    { p™ }   be unique; then the largest linear subti tree 

A traversed by all circuits {p    }   is a single unique branch      (R.ecall that   <f> 

is an empty set). 

Proof:      Call   Z the largest linear subtree traversed by all circuits 
                      a = ' 

{ p    } .    Assume that   Z contains an interior node   n    .     Let   Z      be the ra                                             a a a 

general linear subtree of the network; then a minor tree,    M    ,   is attached 
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to    n If no type A   :ircuits traverse a non   z«;ro portion of   M        ther! the 
a ■ r i ' 

circuits within    M      r.cmpnse a  separable part and thus    M      may be assumed 
a a 

to be attached to a terminal node of   Z If a type A   circuit traverses a no1- 

zero portion of   M    ,   then   n      is a terminal node of   Z        hence   a contradiction r a a i 

Corollary 1:    Let    {p™ }   be unique.     Then there are   \.    ar.d   > .    such 
  a 11 

that      p is exactly *he unique branch traversed bv a!! circuits contained 

i  4>Q lj 

Corollary 2:      There are   \.    and   \.    such that 
 ;  ! 1 

i     $ I 
is exactly 

a unique branch of the network tree 

Definition.     A I p reduction.     From each entry in the matrix 

partition   \p subtract       c where   i    j    are such fhat      ;• is *he 
ij w   "   ij 

sum of all  impedances in the largest linear subtree common to all circuits; 

ip'   }       The effect of this reduction is to replace this largest, linear sub'ree 

whose terminal nodes we wil1   call   n.    and   n,     bv a short circuit     thus 

superimposing its terminal "odes    n.    and   n?       If   ß = cf>,   *hen     largest 

linear subtree'    can be replaced by     unique tree branch. 

The concept of a    {p     }    expansion and a   \: reduction form the 

foundation for  synthesizing a network with    r    circuits from a given   n 

order open-circuit  impedance matrix      In performing an expansion     a:.l 

circuits having a common linear  subtree are determined      I" applying a 

reduction,   the common branches are  removed and the remaining ma'rix 

has its      unknowns  '   reduced bv one      THc dual process is  r-^pea'^d ever 

and over until the synthesis is completed or until a contradiction :?  e r.cour ter ed 

that renders the matrix unrealizable or    n    circuits 

, o c 3   2     Realization of   Z 

The following realization procedure constructs 'he network  rircuit: 
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for a given open-circuit impedance matrix.     It does not construct the circuits 

one by one,   but instead progressively builds the dependent branches,   or tree, 

thus gradually building all circuits more or less  simultaneously.    Briefly, 

it consists of four distinct phases.    In the first phase,   an arbitrary proper 

Q-set of circuits is selected.     The common linear subtree of this a-set then 

becomes the general linear subtree.    All possible expansions    {-P   }   yield 

the complete set of branches that make up the general linear subtree; there- 

fore,   at the conclusion of the first phase,   all the branches of the general 

linear  subtree are known and identified  jy the particular circuits that traverse 

each one.     In the  second phase,   the branches of the general linear subtree 

are placed in their proper position.     In general,   the proper order is obtained 

immediately from the branch-circuit identifications found in phase one.     It 

may,   however,   require information contained in the type B   circuits to be 

certain of their proper order.     Nevertheless,   at the conclusion of the second 

phase,   the general linear subtree is complete,   and each type A   circuit is 

identified by its two points of incidence with the general linear  subtree.     In 

the third phase,   the minor tree branches and trunks that have two or more 

type A   circuits traversing them are developed.     In effect this completes 

the  synthesis of all  relations existing among type A   circuits.     Following 

this,   the remaining circuits,   type B,   are grouped according to the minor 

tree through which each circulates.     In phase four,   the type B   circuits are 

found by applying the preceding techniques to the general minor trees,   thus 

completing the network.     Like the admittance  synthesis method,   this pro- 

cedure either terminates with the desired network or with a contradiction 

rendering the matrix unrealizable by   n    circuits defined by   n   independent 

branch currents 
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ÜC 
When a given open   circuit  impedance matrix.     Z      ,   is based on a 

tree,   Mien that tree can be  redrawn in several ways,   each conforming to 

the general tree form.     This  realization develops the network tree and the 

graph from the matrix by means of successive applications of   | P reductions 

These applications successively develop a general tree form along with the 

manner of circuit interactions occurring within the general tree branches 

3   21     Phase  1 

or 
Let an open-circuit  impedance matrix   Z be given,     Reorder the 

rows and corresponding columns such that the first   a    rows and corresponding 

columns form a partition of all non-zero entries with positive  signs       Lef 

these first   u    circuits form a proper   a   set      In general     {p    }    is not unique, 

however,   it it is unique,   let the common branch be the general  linear sub- 

tree and proceed to Phase  3      If    {p^ }    is not unique     let    z      denote the 
a. a 

largest linear subtree common to all circuits    K    .    This linear subtree 

z      will be produced branch by branch and will become fhe general  linear 

subtree.     This  Phase  1   is concerned with producing all the individual 

branches that make up    z 
a 

Begin by determining all sets    {p     }    and call the   i      set.    {.p    }   = 

•fx    } +  l'\. } .     Each set    { .p™ }    determines a  single unique branch of the 
a' '   1 lr a '- n 

general linear subtree by Theorem 3,   say    z.       Call the intersection of a 

set of the  sets    i\.}      \\. „ , }.     If   \      <£   1\.  Ä  . , },   then ■ l 111 j i 'i        n k p       ' IOJ n        ok 

>.      traverses each of the unique branches    z.      z. ,. . .   z.        Conversely, 
P M l J     j k 

z. ,    z. ,     .    . .   z.     are traversed by   \      if and only if   \       t   (\.  _   . ,   } 
l        j k P piOjnnk 

Therefore,   having determined the  sets    {.p     }    and consequently    z.    and 
° l   a ' l 

{\.} ,   associate with each    z     all the circuits that, traverse    z. 
l i l 
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To understand this process further,   complete a    Li P reduction. 

As expected from the preceding discussion,   this  is accompanied by the 

appearance of zero entries in the       <P partition.     When such a zero 

appears in the   ij   entry of the      4P        partition,   this obviously signifies 

that   X.    and   \.    have as their corraon linear  subtree the single unique 

branch    z. .     Now,   if there is a circuit   X,    €   i\ . } ,   such that the only 1 k 1 ' 

portion of the general linear  subtree through which   X,     circulates  is    z . , 

then call such a circuit   X The presence of a    \ circuit is  signaled 
Zl zl 

by the appearance of zero in the   ij   entry,   where   X.  f    {X . }   and   X.   €   {X   } . 
j 1 1 a 

In general,   if there is a   X.   e   {X . }    such that a zero appears in the   ij entry 

with   X.    € {X   } ,   then zeros will appear in all   jk   entries where   X,    C   {X   } . 
1 a k a 

However,   if zeros appear only in entries   jk   for    X.    € {x , }   and all   X, 
j 1 k 

contained in a proper  sub-set of    {X   } ,   then   z,    must be an end branch 
a 1 

of the general linear  subtree    z    .     This is true because only if   z.    is an 0 a ' 1 

end branch of the general linear  subtree can a    X circuit have more than 
Zl 

one branch in common with  some    X,     €   (X   } .     Let the set of   X      circuits k a z 

be called    {X      } .     Note that if   X,     e {X,   }    and if   X.     e {X. }    for some z A k z A k 1 

i ^ 1 ,   then this is a contradit: 1 ion rendering the matrix unrealizable by a 

set of circuits based on co-tre -s.     Since we know the accurate placement 

of all circuits in    {X      }    in so far as    z       is  concerned,   e.g. ,   through    z. 

only,   they will be ignored in the  remainder of this initial  synthesis phase. 

Note that at the conclusion of Phase   1,   the  set    {X      }    is immediately known 
zl 

since    z      is the only branch that acsociates and and all components of 

{X      }    with itself.     Now,   if a zero appears in the   ij   entry,   where    X.,   X.   £ 
Zl l       J 

{X , } ,   and all entries    ik   and    jk ,   where    X.     €  (X   } ,   are not zero,   then 
1 k a 

circuits    X.    and   X.    are left with no common linear subtree.    However,   they 
1 J y 
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both still circulate through a -or.   y.-ro portion of 'he  remaining general 

linear subtree      Cons ide rat lor, of this  shows that all the   "ireuitg  involved 

in the appearance r{ such zeros may be  grouped into two  sets  such 'hat for 

each set all the members ha1 e a non   r,ero portion of the  remaining g-neral 

linear subtree in common and such that  no member of on-.- set has any DOT- 

zero branch in common with any member of the other set      Call cr.Q of 

these two sets    {) ,R l    and 'he other set    {   IT Call the remaining portion 

of    {.X.»}     those circuits that are not involved with ths appearance of any 

zeros,     lk,tnj,     To clarify this selection by zero occurrence further,   =ee 

matrix (32) and Figure 23,   which together illustrate the occurrence of 

zeros following the       . p        reduction      Note tha' this  il1 ustr r.':o- assumes 

that    z.    is not an end branch.     If it were an end branch    *hrn only    {X_    } 1 ■* z^J 

would be present   together with either    {\._ 'v    or    {>        }     but  rot both. 

To conunue this process    carrv out  a    ' ?'-_   '    reduction      Ore e 

again,   this  reduc'ior is ac :ompanied by the appearance of  :eros in the 

I ?P partition of    Z " Tha  entrance of these  zeros must row take into 

account the preceding reduction.     Tvis is a natural  consequence of the 

possibly nonempty intersection    •'X , „ ? * .     First determine if there are 

anv   X, IOODS     and if so     whether    z-.    is an end branch of *.h°  general 
z? 

i 2 * 

linear subtree.     Recall that the existence of anv   > __       circuits  is  signaled 
c 

by the appearance of zeros in the   li   entry    whjr»    X.    &  {'     \       X      c '*• , 

and   X      «   {X., _ .   ;    lor ail    k 4 2       New    if anv ceres appear in the   ij   envry 
l L n K 

where    X .    c J .■•     ^   and    '       e ■ v , ^ , \ .   'hen this   signals the ape :arance  c' j a ' l •   2 n 1 k- r' 

a   X      _      circuit,   that, is     a circuit that traverses the general  linear subtree 
Zl"Z 

only through branches    z,    and    z ?    and no other branch      Obviously fhi = 

means 'ha'    z,    ard   z,    have a commo: rode and may be drawn as  such 

7 3 



<SR> 

"V; 
NLR

J 

n N- 

{X1LR} 

(a) (b) 

{x } a 

fc«> 

fx,} K1L) 

fXlLR> 

V   V 

+ + + + 0 

+ + 0 + 0 

+ 0 + + 0 

+ + + + 0 

0 0 0 0 

:32) 

Figure 23.     Example of    { p^ }    Reduction:    (a)  Before    {.p   }    Reduction, a. la 
(b) After    {.PW    Reduction Csee mat rix ( il)~] . 
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along with    {\„    }       {X.„   }      and    i \ „   ,   } .     The  remaining circuits in    i'  A 
z 1 z 2 12 z 

may be grouped in three  sets     as  was done for    {X..}       These  sets are 

^X,„ } ,    {X ,,  }      and    {V,D , ) •     By convent ion    these sets are to be labeled 

such that one of the following two  intersections are empty.     {X. , _ } 0{\5     } 

or    {V.T } O  {X       } .     Note once again that at the conclusion of Phase 1 
1L, ZK 

the  set    {X.      „   }    is immediately known since    z,    and    z_    are the only two z\z-> 12' 

branches that associate any component, of    {\.,   ~,    \    with themselves    and 
zl  2 

both    z,    and   z,   associate all components of    {\„   _    }   with themselves. 
1 2 r zizZ 

Continuing in this manner,   consider the    I • p    I   reduction      Again, 

this  reduction is accompanied by the appearance of new zero entries in the 

I   p partition of    Z       The  rows  of this partition can be ordered such that 

the partition takes the form shown in matrix (32),   where    (X . R }   =   {\      } . 

{X.,T }   =   (\.T  }     and    {\„    }   =    (X.'     \ .     In order to take into account all of 
JL l .L Z A Z I 

the preceding reductions       {\     }    is  subdivided into 
i 

{x„ )   •      (\. .  )   .      iK ,  >   .      (V i 

i Vi "   ZiZ^ ZiZ3' 

zizlz2 zi'lz3 zizlz2z3 

These are  sets of circuits that traverse the general linear subtree only 

through branches    b. ,    b,   and   b.      b.   and   b, ,   b.   and   b        . . b.       b. 6 li 1        i 2        i 3 i 1 

and   b,      b   ,    b.   and   b, . ;   b. ,    b. ,    b,    and   b,     and so forth respectively 
2        i 1 3 l 1 2 3 c 

These are determined by viewing the circuits as members of the possibly 

nonempty intersections    (^ir)1)-     (^ n z)       t\ n 3} .    • ^i O 1 O 2^ 

Uinln3),    •••      {\. nin 2 n 3}.   ....   and so forth respectively     To 
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review what is being done, it is worth while to look at the physical inter- 

pretation of what is happening. When . p \ is reduced, z. is reduced 

to a node as  shown in Figure  23.     This leaves four types of circuits in 

. p    I .    After each of the succeeding reductions,   there are also four types 

of circuits in p       .     It is necessary,   however,   to distinguish between the 

self-circuit and sling type in order to position the branches properly within 

the general linear subtree.     It is the nonempty intersection (and hence the 

timely occurrence of a zero) that determines the relative positions of the 

branches. 

This first phase in the  synthesis continues until all the   I    p'        have 

been reduced.     When this has been done,   if   /    z.   =   z    ,   then we proceed 
~    l a c 

i 

to the second phase.     In this case,   at the conclusion of Phase 1   all   ij   entries 

will  be zero for all   X. {X, }    and some    X,. (X   } .     This  indicates that 
l k j a' 

no  remaining circuits traverse a non-zero portion of the general linear 

subtree.     If,   however,     /     z.   ?   z    ,   then some branches ol the general 
l 

linear subtree  remain to be determined      This determination is accomplished 

by forming anew  .he    {   p    }    sets from what remains of the reduced    Z    matrix. 

and   then   repeating   the   foregoing   procedure.        When it is no lorger possible 

to form a    {p _ }    set,   and yet the circuits    (X   j    still comprise a proper 

a-set,   then the largest remaining linear  subtree common to all circuits 

{X    }    is  itself the last branch in the general linear subtree.     This is the 
'   a ° 

conclusion of Phase  1.    All the branches in the general linear  subtree and 

all type A  circuits have been obtained.     Not only have they been obtained, 

however,   but in addition,   their  relative placement is,   to a great extent, 

determined by the manner in which the type A   circuits are associated with 

the branches.     Specifically,   what has been obtained is the totality of general 
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linear subtree branches with each branch identified by the totality of type A 

circuits that traverse that branch. 

Briefly,   Phase 1   is as follows: 

oc 1. Select a proper   a-set in the given   Z matrix. 

2. Form    { . p    }   -   {X   } +  {X.}    from   Z      ,   where   i =  1,   2,   .      , n ■ 

3. Associate with    z.    each circuit that traverses    z. . 
l l 

4. Reduce    IP for all    i ,   where   i =   1,   2,   . . . ,   r} ■ 
oc' 5. Call    Z that matrix resulting when reductions have been 

applied to    Z 

6. Based on the same   a-set,   form    {. p    }   within   Z      ,   where kr a 

k = r, + 1 ,    n + 2 ,    ...>r? + u. 

7. Associate with    z,     each circuit that traverses   z,   . 

8. Continue until   \      is no longer a proper   a-set,   and then call 

oc the final reduced matrix   Z 

3. 22     Phase 2 

In this phase the proper position of all branches    Z.    that make up 

the general linear subtree,     Z    ,   will be determined.    By doing this,   the 

two incident points of each type A   circuit on the general linear subtree 

will become evident simultaneously.    At the conclusion of Phase  1,   each 

branch of the general linear subtree has associated with it all the type A 

circuits that traverse it.     This information,   by itself,   is normally sufficient 

to order the branches.     Let    Z      be composed by   n   branches,     Z   .    First, 
a r ' l 

order the branches  such that it is possible for each to be traversed by its 

associated circuits.     Where it would be possible for a branch to take two 

or more positions,   divide the branch into the necessary number of parts to 

•77- 



retain all possibilities.     This places in evidence all information regarding 

the traversing of the type A   circuits through the general  linear  subtree. 

Next     it is necessary to place in ev;dence the interactions between type A 
r 

oc 
circuits exterior to the general linear  subtree.     Note here that if    Z.. 

ii XJ n 
is non-zero     where    \. ,   X.    €   {\   }  + '       J    {X.} ,    i 4 j ,   then circuits    X. 

l        j a v_/ l r J l 
i = l 

and   \.    are  incident on the  general linear subtree at a common node. 
1 

Remove  such  redundancies from the branch ordering to conform with this 

information      Finally,   it is necessary to place in evidence the  secondary 

interactions between type A   circuits exterior to the general linear  subtree. 
r 

oc 
Therefore,   express as a direct sum of matrices that partition of    Z 

whose  rows and corresponding columns comprise all type B   circuits.     In 

effect,   this  reorders  those  rows and corresponding columns in the type B 
r 

partition of    Z       .    and subpartitions it so that ail the entrie s of off-diagonal 

partitions are  zero      Each of those  subpartitions is a minor tree or section 

of it      Call these partitions       ■ ^ * f      and the cor responding circuits    {■ X.,} . 

.r r 

If    Z.V      and   Z, ,       are non-zero     where    V.    and   X,     are type A   circuits, 
11 k 1 l k '' 

and where    X.    and    X,     are both members of the  same  set    {   \.,) ,   then 
j 1 lr   MJ 

circuits    X.    and    X.     are incident on the  general linear  subtree at the  same 
l k h 

node.     With this  information     the type A   circuits are conclusively specified. 

At the end of this  step,   however,   branches in the general linear  subtree 

mav still appear  redundant.     Such  redundant branches may be erased at 

will     as the  unique  placement of those   remaining branches is immaterial 

in the original    Z    matrix 

Thus the  two points of incidence of each type A   circuit on the general 

linear  subtree hav been  specified      Simultaneously all the branches of    Z 
' a 

have been properly ordered.     In addition the minor trees and/or their  sections 
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have been placed in evidence by the  subpartitions   I   X. .    Briefly,   Phase 2 

is as follows: 

1.    Order the branches in as  general a manner as possible  so that 

their placement allows the proper traversing of their associated circuits. 

Z.     Use direct interaction among type A  circuits exterior to the 

general linear subtree to remove part of the redundancy introduced in step 1. 

3. Use secondary interaction among type A   circuits within the 

minor trees to  remove more of the  redundancy. 

4. Arbitrarily remove all remaining redundancy. 

3. Z3     Phase 3 

An example of the network at the conclusion of Phase 2   is presented 

in Figure  24a.     In this phase the  remaining specification of type A   circuits 

as illustrated in Figure 24b   is to be completed.     This will involve definite 

specification of most circuits as well as  some indefinite redundant specifi- 

cation that will be corrected in Phase 4.     Indefinite redundant specification 

arises when two type A  circuits are incident to the same two nodes and 

interact outside of the general linear subtree.    In this case,   it may be 

impossible to determine how much of the common ''trunk11 branch is at 

one incidence node and how much is at the other incidence node without 

examining type B   circuits.     To complete this  specification of type A   circuits, 

/ n  \ r 

the off-diagonal terms in the    {\   }    and  I     J   {\.}    partition of   Z will 

i = l 
be used. 

Let circuits    X..    and   X..    have a single common node of incidence 
1 J J r 

oc on the  general linear subtree at    n. . .     Then    Z.. is a trunk attached to 
ij 1J 

■79- 



(a) 

r- (b) 

Figure  24.     Final  Phases of Compete Spec 1 fie at ion of Type A   Circuits 
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node   n..,   which both   \.    and   \.    traverse.     Generalizing this concept,   if 

ocr 

Z   .        is non-zero,   and if   X..    and   \.    each have an incidence node different 
ij » J 

from those of the other,   then add that branch to the network.     When all such 
r r oc oc Z..        are operated on in this manner,   the only remaining non-zero    Z.. 

will be those for circuits   X..    and   X..    traveling in parallel with each other. 

For such remaining entries,   divide the branch into parts,   placing one part 

at each of the two common incidence nodes.    This places all type A   circuits 

in their most general proper position relative to each other and completes 

their synthesis in so far as their interactions among themselves are con- 

cerned.     Briefly,   Phase  3   transfers the information from off-diagonal 
r oc entries    Z..        to the network.    Note that,   in effect,   this is merely another 

ij 

{p    }    expansion and      p^      reduction,   where   a   is now the trunk of a minor a L   a J 

tree section,   and    (XR}    is a set of type B   circuits. 

3. Z4      Phase 4 

In Phase 2   the subpartitions      ,\. .      were developed.     Each of these 

partitions relates interactions among type B  circuits within a particular 

minor tree.    In this phase each minor tree  section is developed by con- 

sidering the branches added in Phase  3  as general linear subtrees and 

applying    {p    }    expansion-reduction techniques lo uncover all circuits 

traversing them.    Continuing in this fashion,   the network is completely 

realized,   or shown to be unrealizable. 

This is but one procedure that uses the    {p    }    technique      Many 

variations will occur to the  reader as he becomes familiar with the method. 

As an example of the preceding,   consider matrix (33): 

il- 



,oc 

3 5 2 1 1 1 3 1 0 1 

5 6 4 1 1 3 3 -2 0 3 

2 4 9 3 1 3 -2 2 0 3 

1 1 3 5 3 -2 -2 c -2 0 

1 1 1 3 4 -2 0 0 -2 0 

i i 3 -2 -2 6 0 -2 2 3 

3 3 2 -2 0 0 10 0 0 0 

1 -2 •2 0 0 -2 0 8 0 -2 

0 0 0 ■2 -2 2 0 0 6 -2 

1 3 3 0 0 3 0 -2 -2 8 

(33) 

Let   \.    and   X.-,   be the set    {X.   }.    By inspection,   the expansions are 

(lPJ)   =  V   X2>   X7   -   2. 

{2p*}   =  K4.   X-2>   K3,   X4.   X5   -   Z. 

{3p*}  =  \1:    \z>   \3,   \6.   \10 - 

>k 

/ 

(34) 

It is therefore immediately known that   \. ,   \?   comprise a proper  a-set. 

In addition it is immediately known that the circuits traversing   Z.    and   Z? 

are only   \.    and   X.,, that, the circuits traversing   Z,   and   Z~   are   X..,   X.,, 

and   \. ; and that the circuits traversing   Z.    and   Z,    are only   X..    and   X.,. 

The branches are given by 

Z.   =   Z°.C-   =   Z°Z   =   3 
1 i ' £ < 

7 _o<:        7oc 
*2   =   Z14   =   ^24 (35) 

„oc   _   7oc 
16   "   Al, 10 
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Removing    Z.,   Z-,,   and   Z,    fro 
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proceed a? follows: 

1 

1 

1 

3 

4 

-Z 

0 

0 

-Z 

0 

0 

0 

1 

3 

3    -2 

-2    -2 

-2 

6 

0 

-Z 

z 

3 

1 0 

-2 0 

-2 0 

0 -2 

0 -2 

■Z 

0 

8 

0 

-Z 

z 

0 

0 

6 

-Z 

1 

3 

3 

0 

0 

3 

0 

2 

-2 

8 

remove Z 

1 

4 

3 

0 

0 

3 

0 

1    -2 

0 0 

1 3 

1 

3 

8 

Z 

0 

3 

-Z 

-Z 
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, oc 
(36) 
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In line with branch circuit identifications,   the uniy possibie branch orderings 
r oc 

are shown in Figure  25a.     Next since    Z ._,      is non-zero,   and   X-    and   \_ 

have no portion of    Z       in common,   branch   b.    and   b,    must have a common 1 a 1 2 

node.     This concludes  Phase  1   and   2,   with the resulting structure pictured 
r oc 

in Figure  25b.     Next,   examine the entries in    Z pertinent to type A 

circuits.     This information is transferred from matrix (36) to matrix (37); 

1 3 0 0 0 0 0 0 0 

2 0 3 2 0 0 2 0 2 

3 0 2 7 2 0 2 -2 2 

4 0 0 2 4 2 -2 -2 0 

5 0 0 0 2 3 -2 0 0 

6 0 2 -2 -2 5 0 2 

7 0 0 -2 -2 0 0 7 0 

10 0 2 0 0 2 0 7 

(37) 

Examining matrix (37)  shows that: 

1. X.    interacts with no type A   loops off   Z 

2. \,,   \,,   X^    form a proper   a-set; 

3. X, , X , X.  form a proper a-set; and 

10' 
X.,, X,, X, form a proper a-set. 

This information yields Figure 25c. To finish the synthesis, return to 

matrix (36) and treat the minor tree trunks as was done in Phase 1 and 

Phase  2       This was done by expanding around each trunk as follows: 

Steo 1: 

u 
10       6 \, ,   X,,   X 

X10,   \6>   X3,   \z,   X8   - Z4   :-   Z23 38) 
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(a) 

b2     b3      ■>■ o -o o o o o o o 

(b) 

(0 

(d) 

V    \Z4      W    \Z5 

Figure 25. Realization of Matrix (33). (a) Possible Order at End of 
Phase 1. (b) Structure at End of Phase 2 (c) Structure 
at End of Phase  3.     (d) Structure with All Trunks Developed 

i , ZZ=1 «3=1. Z4  -   Z 

Z5   =   l z6      l 1  , z8 -   Z ■ 
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Thus remove    Z .    from matrix (36),   yielding matrix (39): 

,oc 
remove   Z 

3 0 0 0 0 0 Ü 1 0 0 

0 1 0 0 0 0 0 0 0 0 

0 0 5 2 0 0 -Z 0 0 0 

0 0 2 4 > -Z -Z 0 -z 0 

0 0 0 Z 3 -Z 0 0 -Z 0 

0 0 0 _ ? -t 0 0 z 0 

0 0 -2 -Z 0 0 7 0 0 0 

1 0 0 0 0 0 0 6 0 0 

0 0 0 -Z -2 .> 0 0 6 -Z 

Ö 0 0 0 0 0 0 0 -z 5 

(39) 

Step Z: 

4> 

/ 
4       5       fa       9 

,oc 
J45 (40) 

Thus  remove    Z_    from matrix (39),   yielding matrix (41): 

remove   Z ,.   Z 
4 D 

3 0 0 0 0 0 0 1 0 0 

0 1 0 0 0 0 0 0 0 0 

0 0 5 z 0 0 -Z 0 0 0 

0 0 z z 0 0 -Z 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 ~) -z 0 0 7 0 0 0 

1 0 0 0 0 0 0 6 0 0 

0 0 0 0 0 0 0 0 3 -Z 

0 o 0 0 0 0 0 0 -z 5 

(41) 

Step  3: 

V xi V s -    Z,    -► 
. oc 
'34 

=   Z (42) 
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Thus  remove    Z      from matrix (41),   yielding matrix (43): 

Z 
oc 

Z .,  Z-,  Z, 
4       5       6 

0 

30000001      0      0 

0    1 

0 3 

0 0 

0 1 

0 1 

0 5 

<   0     * 
0 3-2 

0 -2       5 

(43) 

Sterj 4: 

V N z    - zoc    -  1 
^7   "   A18     "   * 

(44) 

Thus remove    Z?   from matrix (43),   yielding matrix (45): 

,oc 
z4, z5, z6, z7 

0 

0 
3    -2 

-2      5 

(45) 

Step 5: 

'10 
X10'   N    ~    Zi -   Z°C -   2 

9, 10 
(46) 
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Thus  remove    Z      from matrix (45),   yielding matrix (47): 
o 

,OC 

7        7        P        Z        Z A4*      5'      6'      7'   ^8 

0 

0 
[47) 

This process is  shown in Figure 25.     Since the  remaining matrix is 

completely reduced,   the diagonal entries are the impedances of th'2 in- 

dependent branches,   yielding the  structure shown in Figure  26. 

Figure  Zb       Realization of Matrix (33) 

-88- 



3. i     Specification of Arbitrary Entries 

sc 
In the    Y realization procedure,   the question of arbitrary specif: 

o c 
cation was dealt with in a  straightforward manner.     Here,   for the    Z 

realization,   the problem is at present not as clear cut.     Not only is there 

a question of sign and magnitude as before,   but in addition there is the 

sign-less  zero entry to be  specified.     As in the admittance case,   the 

realization of a portion of the whole matrix must conform to the realization 

of the whole matrix.     To state this another way,   at any point  in the  reali- 

zation,   that which remains to be done must conform to what has already 

been done.     A constant awareness of this will provide for specifying arbitrary 

entries as the realization develops. 

To begin specification,   note the  state of the network at. the conclusion 

of Phase 2.,     At this  stage of the procedure,   all type A   circuits are to have 

been specified; therefore,   it is logical to check the remaining circuits to 

make  sure that there are no type A   circuits that have not been accounted 

for because of the presence of arbitrary entries      At the conclusion of 

Phase 2   it is possible to determine  sets of two or more type A   circuits 

that traverse a common portion of the  general  linear subtree,,   and that  do 

not have any common branches except those contained in the  general linear 

subtree.     Let   \.    and   \.    be two  such circuits.     In this  case,   if there is 
i J 

a circuit    X.,     that is  not contained in  the  set of  tyue A   circuits  such that 

„oc ,    „oc , ,     . , . ,    „oc     „oc     „oc 
Z.,      and    Z.,      are non-zero and such that the  signs ot    Z Z.,   ,   Z.,   . 

lk jk lj iK jk 
„oc     „oc ,    „oc , , . .        , , . _oc 
Z..   ,   Z..  ,   and    Z, ,     can be made positive  simultaneously,   then the    Z. 

li JJ kk r ' kr 

entries,   where    r    is a type A   circuit,   must be adjusted so that    X.,     is 

included as a type A   circuit.     The  reasoning behind this is obvious.     If 

three or more circuits    {'A.    i    traverse a common set of branches,      lb    } 
e e 
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and if the largest linear  subtree common to two or more of those circuits 

is contained in    (b   }   and is also contained in the general linear subtree, 

then all circuits    {\   }    must be type A   circuits.    In this manner the arbitrary 

entries can be specified. 

oc When a    Z    '    matrix is given with a large number of arbitrary entries, 

such entries can be designated as    + 0 .     The  realization procedure may be 

oc then more conveniently approached by realizing a portion of the    Z matrix 

that, is a concentration of specified entries.    Following that realization,   the 

remaining circuits are added and arbitrary entries  specified until the whole 

is  realized. 

3. 4     Remarks 

o c sc This  realization method for    Z is different from that for    Y 

s c 
Here no general sign matrix is presented.     In    Y every entry has an 

o c associated sign,   while in    Z only about half the  zeros can be assigned 

a plus or minus.     The  remaining zeros have no  sign associated with them. 

The preceding realization procedure is presented as  sufficient to 

war-ent further investigation.     Except, in the large-scale general  case,   the 

procedure is not preferable to a   "common sense11 approach using the ex- 

pansion-reduction technique.     It is presented because in the general case 

its termination is more readily visible.    However,   for a common realization 

problem,   a good understanding of the    {p'   }    expansion - reduction concept is 

by itself the more effective approach,   since  it is also directly applicable to 

the  realization of    Y matrices.     In addition,   most of the concepts and 

methods in this chapter appear directly applicable to the mesh impedance 

matrices,   but are harder to prove. 
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IV.     MULTIPORTS AND RELATED TOPICS 

4 . 1     Relations between    Y Z and Multiports 

In the description of a network by an admittance or impedance matrix 

it is important to know exactly how the matrix was obtained.     This is neces- 

sary because many characteristics of complete open-circuit and short-circuit 

matrices are very different from those of multiport matrices. 

The preceding discussions on analysis and synthesis were concerned 

s c 
with complete  short-circuit admittance matrices,    Y      ,   and with complete 

open-circuit impedance matrices,    Z      ,   both of n      order.     ''Complete" 

indicates that the originating network is  completely described by the  responses 

of   n    independent branch voltages,   or that the originating network is completely 

described by the  responses of   n    independent branch currents.     The terms 

''short-circuit:' and     open-circuit1    indicate which network variables are 

the  responses and what form the equivalent excitations assume.     ''Short- 

circuit''  refers to the fact that the  response of the network is in terms of 

independent branch voltages and to the fact that all excitations may be re- 

placed by current  sources acting in those independent branches.     ''Open- 

circuit'    refers to the fact that the  response of the network is in terms of a 

set of independent branch currents and to the fact that all excitations may be 

replaced by voltage  sources acting in those independent branches.     It is very 

gr OC 
important to  realize that in these matrices,    Y and    Z      ,   the  role of ex- 

citation and response cannot be  reversed without changing the network graph. 

This can be  seen by examining one independent branch in which the  roles of 

excitation and response are  reversed (see Figure  27 and Figure  28).     These 

s c two figures show how a  reversal of excitation and response roles in   Y       and 
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OC 
Z require that a new branch be added to contain the new  .source excitation. 

If this new branch were not added    the basic generalized branch definition 

would be violated,   since a new voltage  source would parallel an impedance, 

or a new current source would be in series with an admittance,   thus violating 

the general branch shown in Figure   27a   and   28a. 

This change m network graph accompanying the reversal of excitation 

and response  roles does not occur when the admittance or impedance matrix 

is viewed as an   n   port  matrix.     This is because the port matrix essentially 

ignores the network topology and is concerned only with terminal behavior. 

It describes the network response only in so far as the terminal  response 

is concerned and it demands that the excitation always occur at the  specified 

o c s c 
terminals.     If a graph is given for a network    and   Z and   Y        are viewed 

as   n-port impedance and admittance matrices,   the role of excitation and 

response may be  reversed with  requiring any change in the network graph. 

As  illustrated in Figure 29    this is because each excitation by itself is con- 

sidered to be a  separate network branch      Because of this.,   the previous 

statement concerned with    Y and    Z excitation and response  reversal 

may be extended as follows 

s c 
In    Y the  response is  in terms of a complete set of independent 

branch voltages   and the excitation is in terms of equivalent current sources 

located within the  same independent branches:   in    Z the response is in 

terms oi a complete  set of independent branch currents,   and the excitation 

is  in terms of equivalent  voltage sources.     If at a particular independent 

branch     the  rol«s  of excitation and response are  reversed,   then that reversal 

is accompanied by definite change   in the network graph except in the isolated 

case where the  network graph remains the  same if and only if that independent 

branch admittance (impedance)  is   identically zero. 
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(a) 

(b) 

+ *- 

a-o1—<j - >-o<? 

°-r*+2 

vi   t 

o c s c Figure  29.     Change in Network Perspective When    Z        or    Y        Are Viewed 
as   n-Port Matrices:    (a)    Zoc    Independent Branch Viewed as a 
Port,    (b)    Ysc    Independent Branch Viewed as a Port. 

t Y\ 
It should now be obvious that an n      order complete short-circuit 

admittance matrix is automatically an  n-port admittance matrix,   that an 

th        , , .... .     . ., 
n      order complete open-circuit impedance matrix is automatically an 

n-port impedance matrix,   and that the converse definitely does not hold. 

If   Z    and    Y    represent   n-port matrices,   this may be expressed as 

YSC   ->   Y 
oc z      -  z (48) 
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The necessary and sufficient conditions for the reverse to hold; that is, 

Y   -   YSC Z   -   ZCC , (49) 

is the existence of a network for which Equations (48) hold.    One procedure 

for determining the existence of such a network is presented in Chapter II 

(admittance case) and Chapter III (impedance case).     These two chapters 

bring out two strong dissimilarities between    Y        and   Y    or    Z        and   Z. 

Most evident is the requirement that both the diagonal and the off-diagonal 

entries in    Y   "    or    Z must involve sums of driving-point functions 

(therefore must be driving-point functions),   and less evident are the de- 

pendence relations of the entry sign and zero entry. 

s c oc 
In   Y and    Z equations,   the independent variables (excitations) 

are given in terms of the dependent variables (responses); that is 

E   =   Z°C J , (50) 

and 

I    =    YSC V , (51) 

where   E   and   I    refer to voltage and current sources,   and   J   and   V    refer 

to current and voltage responses.    Since the  roles are interchangeable in 

port equations,   it is the port equations that are desirable in network analysis 

because in them the dependent variables (responses) are expressible in terms 

of the independent variables (excitations).     Port equations exist in varying 

degrees of completeness.     The most complete admittance port equations are 

• 1 

[Z°C]      E    =    YSCET •" , (52) 

and the most complete impedance port equations are 

1 
V =   [YSC

]      I    =    YSC I , (53) 
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when these inverse matrices exist.     Existence of the inverse matrices  requires 

s c oc 
that   det |Y      |    and   det |Z be non-zero; or,   equivalently,   that for 

s c 
det |Y      I ,   there exists at least one network tree such that the product of its 

oc 
generalized branch admittance is greater than zero,   and for   det |Z 

there exists at least one network co-tree such that the product of its gen- 

eralized branch impedances is greater than zero.     The matrix    Y      (Z    ') 

is complete since the response of any branch current (voltage) to any set of 

source excitations is directly obtainable from simple algebraic combinations 

oc       sc sc oc 
of the entries    Y..    (Z. ) .     Their inverse matrices    Y        and   Z      ,   are, 

j.j u 

however,   generally of little value as port equations that give responses of the 

network in terms of excitations,   since by so doing they effectively destroy 

the network.     This destruction should be clear upon considering Figures  30 

and 31.     In conjunction with this,   let network   N   have   b   branches and   n 

nodes,and be connected.     Then if    Y is viewed as an   (n - 1) -port matrix, 

the network has    b   independent branch currents; if viewed as a   (b - n + 1)-port 

matrix,   the network has   b   independent branch voltages. 

4. 2     Reduced Networks 

The essential characteristic that excludes the consideration of most 

s c oc 
multiport matrices as    Y or    Z matrices is that many response variables 

oc 
within the network are not determinable.     The equations    E = Z       J   and 

s c 
I   =   Y   " V    involve a complete independent set of   n    response currents and 

voltages respectively.     Assume,   however,   that only the first   k   of these 

responses are of interest.    It is then natural to eliminate the last   n - k 

variables as follows; 
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'k+1 

,oc 
Jk.k 

,oc 
'k, n-k 

 (. 

,oc 
'n-k,k 'n-k, n-k 

k+1 

154) 

or 

-    '"'üc        T +   7oc T 
'k, 1 ^k, k      k, 1 k,n-k     n-k, 1 

zoc        (zoc IE = Z°C       I ZOC I     Z°C j + Z°C J 
k,n-kl   n-k,n-ky        n-k,l  ~~     k,n-k\    n-k,n-k/     ^n-k,k    k,l k,n-k    n-k,l 

where 

'k, 1 

(55) 

Jn-k,l 'k+1 

E 
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and 

k, 1 

n-k,l k+1 

Subtracting Equations (54) and (55)  gives 

Ek,l " Zk,n-klZn-k,n-kJ    En-k,l kk k,n-kl    n-k,n-ky        n-k,k|    k, 1 

Rewriting this equation gives 

k,l k, 1 k,l |     kk k,n-k^   n-k,n-ky n-k,k (    k,l 
V 

(56) 

whe re 

_n zoc |zoc |       E 
k,l k, n-k \   n-k, n-k/ n-k, 1 

and 

f"        -   F Fn 

k, 1   "      k, 1 k, 1 

/here    E,     .    represents the new equivalent voltage excitations acting in t!ie 

-,o first    k   independent branches.     The interpretation of    E,     .     is  significantly 

different from    E.     Recall that    E    represents all excitations in the network 
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replaced by an equivalent set of voltage excitations ir. the independent 

branches.     However,     E,     .    is a set of voltage sources in the first   k 
k, 1 

independent branches for the purpose of negating the effect of any sources 

in the  ''floating'1 portion of the network on the first   k   response currents. 

Therefore    E,     ,    represents all excitations in the network replaced by an 

equivalent set of voltage excitations in the first   k    independent branches 

such that all excitations in the floating branches are effectively zero.    As 

a natural consequence of this we assume    E     ,     .   =   0 , so that,   for simplicity, 1 n-k, 1 L J 

we may write 

Ek, 1   =   Ekl    =   \Zkk "  Zk,n-k(Zn-k, n-k)       Zn-k,k)Jk, 1        '    (57) 

be- Similarly,   for    Y      , 

I -  YSC (YSC 

k, 1 k, n-k\   n-k, n-kj       "n-k, 1 

k,l        k,l        k,l      xk,l kk       'k,n-k      n-k,n-k n-k,k/k,l 

In conjunction with Equations  (54) and (58),   note that if 

(58) 

then 

7oc                „oc 
^kk                 ^k.n-k 

„oc                „oc 
n-k,k            n-k,n-k 

1 

-1 

YOC            !    Y°C 

k,k         !       k,n-k 

1 
1 

,,OC              1    ,.oc 
i                      Y n-k,k            n-k,n-k 

=   Y 
oc 

/ N-l l-l 
OC /       OC OC [7

oc \ 7OC 

kk       |    kk  "     k,n-kl    n-k,n-ki n-k,k 

(59) 

(60) 
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This process of allowing certain independent branches to float leads 

to two types of matrices.     If the  remaining   r.dependent branch?? form a 

single  subtree of the original maximal tree,   then the  resulting matrix will 

be called a  complete mulliport matrix.     It is complete    because if the resulting 

matrix has    k   ports.,   then these ports form a tree and therefore require only 

k +  1    terminals.     However,   if the  remaining independent branches form 

several unconnected subtrees of the original maximal tree    then the resulting 

matrix will be called an incomplete multiport matrix,   or  simply a multiport 

matrix. 

The inclusion of multiterminal  element^   which are mathematical!v 

described by a complete multiport matrix    in the discussion o-1 admittance 

and impedance is a natural  consequence of reducing the number of response 

voltages and currents described.     The discussion following will describe 

network analysis of networks with multiterminal elements       This discussion 

assumes that   sources  are present omv in the independent branches that are 

not floating.     This assumption    as  shown above,   doe^ not affect operations 

on the    Z    or    Y    matrices    it only simplifies the interpretation of the excitation 

source vector:   and as  such does not affe~* the  results 

4   i      Network Analysis Irvolvmg Multiport s 

Let    N   be a network containing    b    branches and   n    nod's       Let th« 

n   nodes be grouped into three mutually exclusive  sets    n..   n?,   and   n. 

Assume that  no branch exists that is  incident on both an    n.    node and an 1 

n      node   (see Figure   3Z).     Call a branch that is incident on an    n.    node and 

an   n.    node    b. .       Then i he re exist five types of branches in    N;    b . ,     b, ,. 
j l j 11       Z 2 

b,,     b,,.   and   b-,.       In general,   a maximal  tree of    N    will  contain al!  fiv« 
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ALLOWABLE 
 UNALLOWABLE 

n 3 n o d e: n2nodes n, nodes 

Figure  32.     Example of Allowable and Unallowable Branches. 

types of branches.    Let a maximal tree be selected such that all   b??   tree 

branches form a single subtree,   such that all   b??,   b. .    and   b. ?   tree 

branches taken together form a single subtree,   and such that all   b-,?,   b~,, 

and   b-,,   tree branches taken together form a single subtree.    Based on 

this maximal tree,   the  set of independent branch voltages,     {v} ,   may be 

ordered such that 

{V}   =   {V       V VV V       V V } 1    ;        VV1'      2'   ••'     j*      j + 1'   '•■'   Vk'      k+l'   •••'      n-ly      ' 

(61) 
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where 

{V., . . . , V. ) are response voltages across the b. . and b.-, branches, 

{V. ., . . . , V, } are response voltages across the b-,, branches, and 
J T  1 K Li Ld 

{V,     .,   . . . ,   V     . }   are the response voltages across the   b,,,    and   b-,., k+1 n-1 r b 23 33 

branches. 

Since no   b. ,    branches exist,   and therefore no corresponding independent 

branch voltages from an   n.    node to an   n.,    node,   the complete short-circuit 

admittance matrix takes the form of matrix (62): 

,,sc 

j + l 

k 

k+1 

n-1 

! 

P4 

T 

At C        |       B 

1 
0 '      R I        P0 it, 3 

(62) 

If the variables    V. k+1' ,   V     .    are allowed to  "float" and are thus re- n-1 
V8C moved from the admittance equations,   the matrix   Y        becomes a complete 

rnultiport admittance matrix   Y ,   which is, 
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1   I 
A 

C   - BP3    Bt 

(63) 

In matrix (62) and matrix (63),     P.    is concerned solely with   b, , 

and   b. T   branches;    A   is concerned solely with   b.,   branches,    P.,    is 
1Z ' 1Z j 

concerned solely with   b,,   and   b....    branches;    B    is concerned solelv 

with   b, ,    branches; and   C    is concerned with    b . .,   b. ->    b,,.   b , ,    ard 
iLi lllZZZZi 

b,,    branches.     Let   C   be written as a sum   C  = C .   + C, ,   where    C .    is 
33 1 Z ' * 

concerned solely with   b..,   b.-,,   and   b,,   branches,   and   C,    is concerned 
111'. Z Z Z 

solely with   b.,.,,   b,,,   and   b-,.,    branches.     Then,   matrix (63) can be writrer 

C - BP^1 B 

1+Y3 

0     C2-BP-1B1 

(64) 

where 

Y 

Pl        A 

At Cl 

0        CZ-BP3    Bt 

(65) 

Now let    N    be represented as a union of two networks    N.   U   N ,.   where    N , 

and   N.,   have no common non-zero branches and have the  set of   n,    for 
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common nodes.     The  specific branches in   N.    are the    b.,,   b.-.,   and   b-, -, 1 1112 22 

branches that appear in   C. ; the specific branches in   N7   are the    b     , 

b?,,   and   b??   branches that appear in   C,.     Parallel branches in   b??    must 

be allowed. 

With respect to    Y .,   note that if all the branches in   N?   are removed 

from   N    (that is,   all branch admittances in   N?   are set equal to zero) then 

matrix (62) becomes 

rSC 

A      |      0 

I 

 1-- 
0      I     0 

—\ — 
o    I     0 

(66) 

Therefore    Y .    is actually the complete short-circuit admittance matrix 

of   N. ; that is, 1 

Y     =   YSC 

1 XN, 
(67) 

With respect to    Y, ,   note that if all the branches in   N.    are removed from 

N ,   then matrix (62)   becomes 

0 

0 

0 

C 

0 

B 

0 B. 

and if the variables    V.     ,,...,   V     .    are allowed to float,   then matrix (63) k+1 n-1 

becomes 
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Y   = 

0,-BP;1 B. 

0 0 

0        Y 
CMP 

(68) 

,CMP 
N. 

where    YXT*"        -   C ?  - BP   '   B     is the complete multiport admittance matrix 
3 

for network   N _,    where all the   b,.,   and   b.,-,    independent branch voltages 
3 2 3 .33 r 6 

are floating.     Thus matrix (64)   becomes 

Y YSC    +   v 

N,   +    \3 
1 „CMP 

(69) 

Equation (69)  is merely the multiport admittance matrix for a network    N, 

into which a multiport network    N,    has been inserted.     The  important 

restrictions here are that the admittance matrix for the multiport    N,    be 

complete,   and that the corresponding ports of   N,    into which it is plugged 

form   a single subtree of the maximal tree of    N.  . 

The impedance development follows the same text as the admittance 

development with the natural substitution of dual quantities.     Arter '!■•,- 

substitution,   the following dual equation results: 

'N 
+   Z zoc   + 

Nl 0      z CMP 
(70) 
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,sc With reference to Equations (64) and (69),   the only portion of    Y* 
NI 

that is affected is    C . .    A careful analysis of this shovs that only the entry 

magnitudes are affected; that is,   the  signs of   C.    are identical to the signs 
_1 

of   C .  + C,  - BP,     B, .     In addition,   one should observe that the common \ L it 

problem of circulating currents  is nonexistant in this type of connection; 

that is,   any ''circulating currents, " if they exist,   are automatically taken 

care of throughout the process described in Section 4. 3. 
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APPENDIX A: EXPLANATION OF TERMS 

Primary Axiom:    If   M    is an arbitrary finite or infinite collection of ele 

ments,   and if to each (unordered)  pair (A, B) of elements in   M     a finite or 

infinite integer   M . _  = M^ .    >   0    is assigned such that for each   A   at least 5 AB BA & 

one    MAR   ^
S
 non-zero.    Call this a  graph,   which designates the elements 

of   M   as nodes and in which any two nodes   A   and   B    are  joined bv   M „ ,. J y        AB 

branches      This axiom is used in this study only for the case where    M   an.d 

M . _,    are fini! e . 
AB 

Subgraph:    If the nodes of graph   G.    are at the same time nodes of graph G 

and if the branches of graph    G.    are likewise the branches of   G,   'hen    C. 

is a  ' 'subgraph'' of    G. 

Incidence:    If a branch   AB   terminates on a node A .   then that node and 

branch are  ''incident1' to one another. 

Eegree:     The number of branches that are incident on a node   P   of a graph 

G   is the  ' 'degree" of    P   in   G 

Branch Sequence.    If one can enumerate all the branches of a (finite)  graph 

in a  sequence of the form, 

AB,   BC,   CD,   ...,   KL,   LM        , (7^ 

where each node and each branch can occur arbitrarily (finitely) often     th«' 

graph is called a  ''branch sequence. l:    When   A/M    call   the   branch 
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sequence  ''open;11   when   A = M,   call it  "closed. "    If a branch occurs in 

Equation (71)    n-times,   then call    n   the  ''multiplicative index'1 or  ''multi- 

plicity'' of the branch with reference to the branch sequence. 

Branch Train:    If no branch occurs twice in Equation (71),   then call the 

branch   sequence   a   ''branch train1' (open or closed).    If,   in addition,   the 

points,   A,   B,   . . . ,   L,   M,   are collectively different from one another,   then 

call the open branch train a  "path;"    if   A =  M,   but   A,   B,   . . . ,   L   collectively 

differ from one another,   call the closed branch train a "circuit. " 

Connected Graph:    If a path exists between ectcli pair  (A, B) of nodes in a 

graph   G,   then call    G   a "connected graph. " 

Tree:    If   G.    is a connected subgraph of   G,   such that all the nodes of   G 

are contained in   G,    and such that no circuits in   G,    exist,   then call    G. 1 11 

a  "tree" with respect to    G. 

Co-Tree:     If   G.    is a tree with respect to    G,   then call all the branches 

of   G   not contained in   G,    the complement of   G, ,   or  "co-tree. " 

Chord:    Call a branch of a co-tree a  "chord. 
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APPENDIX B:    MAXIMUM NUMBER OF BRANCHES  IN  PLANAR GRAPH 

Through a straightforward application of Euler's foimula    which 

relates the number of faces,   edges,   and verticies for a simple polyhedron 

one may surmise that the maximum number of branches in an   n node planar 

graph is    3n ■■ b .     Since there is some question as to whether this constitutes 

a valid proof,   the following proof,   which relies on Kuratowski's two basic 

nonplanar graphs,   is offered.     Three assumptions are madf:: 

i)   A graph is composed of branches and nodes. 

ii)    A branch always terminates on a node at both ends and does not 

terminate on the  same node at both ends. 

lii)    Given any two nodes,   there exists at most one branch terminating 

on those two nodes. 

Theorem:    If a graph    G   contains    n   nodes and   b   branches and is   said to 

be planar,   then for   n > 3 ,    b < 3n - 6 . 

Proof.    The maximum number of unique branches in any three   nod» graph 
2 

n =  3   is   —5    =   3   =   3n •   6   and any combination of those branches is 

trivially planar (see Figure  33a). 

The maximum number of unique branches in any four-node graph 
2 

n = 4,   is    y—   =   6   -   3n - u,   and any combination of those branches is 

trivially planar (see Figure  33b). 

Assume a. planar graph has    b =  3n -  6 T Q    for   n > 5 ,    o. > 0 

Since a graph is planar  if and only if every subgraph is planar     it  wilj 

suffice to erase any   u  -  1    branch and show that the  remaining graph    G 

having    n   nodes and    3n  -  5    branches is nonplanar.     For    G'     there exists 
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Figure  33      Examples of Geometrical Construction Used in Proof. 
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at least one node,     n   ,   with live or fewer brandies terminating on it      It' o s 

not,   there would be at least    6n/2  =   3n    branches in    G      contrary to con 

st ruction 

Case  1:    If   n      has zero branches terminating on it     erase    n      ard 
  0 & o 

three arbitrary branches in   G'. 

Case 2:    If   n      has one branch   b„ .    terminating on it    erase    n 
  o 01 b o 

and    b- .    and two other arbitrary branches in    G1 

0 1. 

Case  3:    If   n      has two branches    b»,    and   b„ ,    terminating on it   o 01 02 6 

erase    n   .   b, , ,   b„->,   and one othe r arbitrary branch in    G'. o       01       0 2 

Case 4.    If   n      has three branches   b_ .     b„ ,    and   b„ ,    terminating   o 010 2 0 3 

on it.   erase    n   ,   b_ ,,   b„ ,     b_ , 
o       01       0 2'      03 

Case  5:    If   n      has four branches    b„ . .   b~-,,   b_,.   b. . 
  o 01020304 terminating 

on   n      at one end and on   n.,   n_,   n,,   and   n ,    at the other end respectively o 12       3 4 ' 

then there exists a  pair of nodes    n.    and   n.    (where    i,j 2.34      :   J 

such that there  is no branch    b..    connecting that pair of nodes  in    G  .     If 

this were not the case,   each of tne five nodes y.'oaid be connected to each 

of the other four nodes and thus the subgraph composed of the five node? 

and their connecting branches would constitute Kuratowski's firs*  basic 

nonplanar form thus   requiring    G'    to be nonplanar.     Erase    n   ,   b~ , .   b,. , 
- <= o       0 U c. 

b„-,,   b„ ,,   and add branch   b. .    such that the planar characteristic is no' 03       04 IJ 

altered.     This is possible as follows:    Let    i =  1.   j  -  2       Eras' 
'0 3 

and 

b_ Now  replace the chain   b„.,   n   ,   b~ ,    by the branch    b. -,    'ha' not 04 ' 01       o       02       ' 12 

altering the planar characteristic of   G'    (see Figure  3 3d) 

Case 6.    If   n      has five branches    b».,   b_-,. . ,   b_r    terminating                o                                                 010 2 0 5 

on    n      at one end and on    n..   n, n,-    at the other end  respectivelv 
o 1'      2 5 

then there exist   three different pairs of nodes    n.    and   n. ,     n,     and    n. 
i J k 
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and   n        and   n      (where    i,   j,   k,   m,   n   =   1,   2,   . . . ,   5,    when   i ^ j ,    k ji j , 

m / n ,   and either   m = i   with   n / k,   or    m. = j    with   n  i i, k),   such that 

there are no branches   b.   ,   b, .,   and   b cornecting those pairs of nodes 
i j        K.J mn 

in   G'.     If this were not the case,   then the  six nodes   n   ,   n.,   . . . ,   n      couid 

grouped into two sets of three each with the property that there would exist 

a branch from each node in one set to each node in the other set and vice 

versa.     This comprises a definition of Kuratowski's second basic nonplanar 

graph,   thus requiring    G1    to be nonplanar.     Erase node    n   ,   branches    bn., 

b„,,   . . . ,   b_c,   and add two of the branches   b...   b. .,   and   b such that 
0 c. U D IJ       KJ mn 

the planar characteristic of   G1    is not altered.     This is possible in a manner 

similar to the method indicated in Case b.     Let   i =  1,   j =  2,   k =  3.    If 

m =  3,   n = 4,   erase branch   b   _    and replace the chain   b. .,   n   ,   b        by 

branch   b. -,,   and the chain   b   .,   n   ,   b„,   by the branch   b...    (see Figure le). 

If   m = 2,   n = 4,   erase branches   bn _    and   b_.    and replace the chain   b_,,, 

n   ,   'n by the branch   b.,,   and the chain   b_-,   n   ,   b„-.    by the branch   b^^ 
o0<£ \i. 0 3oUii 23 

(see Figure  33f). 

In all the preceding cases iet the resultant subgraph of   G'    be    G". 

Then    G''    has    n - 1   nodes and    3n -  5  -  3 =  3(n - 1)  -  5   branches.     Let 

n -  1  = n'.     Then   G''    has   n'    nodes and    3n'  -  5   branches.    Continue this 

process until   n = 5   and let this remaining subgraph of   G1    be called   G   . 

Now    G      has five nodes and    15  - 5 =  10    branches.    A graph with five nodes 

and ten branches must have each node connected to every other node and 

5 
hence is Kuratowski's first basic nonplanar graph.    Since    G      is nonplanar, 

G   must be nonplanar,   resulting in a contradiction. 

The equality in the theorem follows from the following construction. 

Place three nodes on a sphere.    Add the three unique branches to the graph. 
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Add a node      h must fail within a    'triangle" and thus there are ' hr ;e 

branches that may be added in a planar manner.    Add these three brar.cht • 

Add another node,   . . . ,   etc.    '.o construct a planar graph containing    n 

nodes and    b =  in  - 6    branches. 

Corollary.     If a planar graph with    n >  i   nodes and    in   -   6    branches is 

mapped on a sphere,   the only existing loop with no branches appearing 

withm it (or without it,   as the  case may be) is a loop containing three nod 

and the three unique branches connecting them. 

Proof:    If there were four or more nodes in the loop,   it would be possible 

to add one branch in a planar manner thus bringing the total number of 

branches to    3n  - 5 ,   resulting in a contradiction. 
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